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At the Fermilab Tevatron, where p �p collisions are pro-
duced at

ffiffiffi
s

p ¼ 1:96 TeV, Wþ (W�) bosons are created
primarily by the interaction of u (d) quarks from the proton
and �d ( �u) quarks from the antiproton. Since u quarks carry,
on average, a higher fraction of the proton’s momentum
than d quarks [1,2], the Wþ tends to be boosted along the
proton beam direction, and the W� tends to be boosted
along the antiproton direction. The difference between the
Wþ and W� rapidity distributions results in a charge
asymmetry

AðyWÞ ¼ d�þ=dyW � d��=dyW
d�þ=dyW þ d��=dyW

; (1)

where yW is the W boson rapidity [3] and d��=dyW is the
differential cross section for Wþ or W� boson production.
The parton distribution functions (PDFs) describing the
internal structure of the proton are constrained by measur-
ing AðyWÞ [4].

Previous measurements [5–8] of the W charge asymme-
try at the Tevatron were made as a function of the pseudo-
rapidity � [3] of the leptons from decays of W ! l�l (l ¼
e; �) since the W decay involves a neutrino whose longi-
tudinal momentum is not determined experimentally.
However, the lepton charge asymmetry is a convolution
of the W production charge asymmetry and the V � A
asymmetry from W decays. These two asymmetries tend
to cancel at large pseudorapidities (j�j * 2:0), and the
convolution weakens and complicates the constraint on
the proton PDFs.

In the measurement presented in this Letter, the compli-
cation is resolved by using additional information in the
lepton transverse energy (ET) and the missing transverse
energy (E6 T) [3] on an event-by-event basis to measure the
asymmetry as a function of the jyW j instead of the lepton
j�j. This new analysis technique [9] gives the first direct
measurement of the W production charge asymmetry using
W ! e� decays. We use data from 1 fb�1 of integrated
luminosity collected by the CDF II detector. The region of
acceptance is jyW j< 3:0, giving the new measurement an
ability to improve proton PDF determinations for 0:002 &
x & 0:8, where x is the fraction of the proton momentum
carried by u- or d-type quarks. This analysis is described in
detail in Ref. [10].

The CDF II detector is described in detail elsewhere
[11]. What follows is a brief description of the detector
components needed to identify W ! e� events, which are
characterized by large missing transverse energy (E6 T) and
a track in the central drift chamber (COT) [12] or in the
silicon tracking system (SVX) [13,14] that points to a
cluster of energy in the electromagnetic (EM) calorimeters
[15,16]. The SVX provides precise track measurements
from eight radial layers of microstrip sensors. The COT
provides additional tracking information from 96 layers of

wires. Tracks are measured inside a 1.4 T solenoidal
magnetic field that allows electron charge determination
from the curvature of the track. The COT allows track
reconstruction in the range j�j & 1:6, while the SVX ex-
tends the capability up to j�j ’ 2:8. Outside the tracking
system, EM and hadronic (HAD) calorimeters measure the
energies of showering particles. The calorimeters are di-
vided into two types: a central calorimeter with a fiducial
region covering j�j< 1:1 and a forward calorimeter cover-
ing 1:2< j�j< 3:5.

We use two types of W ! e� events, classified by the
calorimeter section in which the electron is detected. The
data are initially selected by an on-line event selection
(trigger) system. The trigger for the central electrons re-
quires an EM energy cluster with ET > 18 GeV and a
matching track with pT > 9 GeV. The forward trigger,
designed specifically for W candidates, requires an EM
energy cluster with ET > 20 GeV and E6 T > 15 GeV.

For central electrons, we require off-line event selection
including an isolated energy cluster in the region j�j< 1:1
with ET > 25 GeV and Isoð0:4Þ< 4:0 GeV. The isolation
Iso(0.4) is defined as the calorimeter energy contained
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w�
1;2 ¼

P�ðcos��1;2; y1;2; pW
T Þ��ðy1;2Þ

P�ðcos��1; y1; pW
T Þ��ðy1Þ þ P�ðcos��2; y2; pW

T Þ��ðy2Þ ; (2)

where

P�ðcos��; yW; pW
T Þ ¼ ð1� cos��Þ2

þQðyW; pW
T Þð1� cos��Þ2: (3)

The �



ceptance of the event (estimated with simulated data) and
efficiencies of the trigger and the electron identification
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