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Abstract

A single-particle relativistic theory turns out to be inadequate for
many situations. Thus, we begin to develop a multi-particle relativistic
description of quantum mechanics starting from classical analogies. We
start with a Lagrangian description, and use it to build a Hamiltonian
description we can then quantize. We then illustrate the decomposition
of the eld into its positive and negative energy components, and de ne
the creation and annihilation operators.

1 Introduction

Relativistic quantum mechanics turns out to be inadequately described by a
single-particle theory. One of the primary reasons for this is that a relativistic
particle may have enough energy to create other particles, and thus any theory
describing it must account for this.

A theory which describes an in nite-degree-of-freedom system could be built



We will assume there exists an action S de ned as normal, which we can write
in terms of L: Z, Z, Z,

S= dtL = dtd®xL = d*x L )
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We will further assume that L depends only on the eld variable and its rst
derivative, i.e.
L=L( (x);@ (x)) (3)

Now we will change the eld arbitrarily and in nitesimally to nd what condi-
tions will result in a stationary action

)= 0+ (X )
and apply the vanishing boundary condition
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Now we can look at an in nitesimal change in S:
Z ¢
S= d*x L (6)
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We can expand this using the total derivative of L:
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We will pick the Lagrangian density

1 1
L=2 ~m? 2 11
e 0 3 (1)
This choice can be motivated by looking at the Lagrangian for a classical har-
monic oscillator,

1 1
L= Zmv? Em!2x2 (12)
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We see that if we treat (x) as x, @ is analogous to v, and doing so gives us

(11).
Evaluating both sides to be
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with the Hamiltonian itself de ned as
Z

H= d°H 17)

Clearly, these are de ned very similarly to their classical de nitions.



equations with
-x) =71 (x);Hg
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Here we have used that the Hamiltonian is time-independent, so we can assert
that x° = y°, allowing us to use the equal-time relation (19). We can go through
a similar process to nd -:
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These rst-order Hamilton equations give us the second-order equation
N=-00=r?(x) m? (x
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4 Field Decomposition
The following plane wave equation set forms a complete basis for solutions to
the Klein-Gordon equation [1]:
(x)=e ™ (30)
in this basis:
- (31)

We can use this basis to expand
z
d*ke ™®*~(k) ; C=
(9 (2 )3

(x)=C
This is essentially a Fourier transform of ~(k), with C introduced for later

convenience. We can now plug this into the Klein-Gordon equation:
z
d*ke ™*~(k)=0
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So at least one of the following must be true:
k? = m?
(34)

“(k)=0

So, ~is only non-vanishing when k? = m?; we’ll de ne ~ in the following way

to capture this:
(k) = So,”



Now we can plug this new form into (35b):
(0=C ddk ot (K E)+ (+Ex)
K
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We will replace E, with k® and switch k 2o k in the second term to obtain
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