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Abstract

A single-particle relativistic theory turns out to be inadequate for
many situations. Thus, we begin to develop a multi-particle relativistic
description of quantum mechanics starting from classical analogies. We
start with a Lagrangian description, and use it to build a Hamiltonian
description we can then quantize. We then illustrate the decomposition
of the �eld into its positive and negative energy components, and de�ne
the creation and annihilation operators.

1 Introduction

Relativistic quantum mechanics turns out to be inadequately described by a
single-particle theory. One of the primary reasons for this is that a relativistic
particle may have enough energy to create other particles, and thus any theory
describing it must account for this.

A theory which describes an in�nite-degree-of-freedom system could be built



We will assume there exists an action S de�ned as normal, which we can write
in terms of L:

S =

Z tf

ti

dtL =

Z tf

ti

dt d3xL =

Z tf

ti

d4xL (2)

We will further assume that L depends only on the �eld variable and its �rst
derivative, i.e.

L = L(�(x); @��(x)) (3)

Now we will change the �eld arbitrarily and in�nitesimally to �nd what condi-
tions will result in a stationary action

�(x) ! �0(x) = �(x) + ��(x) (4)

and apply the vanishing boundary condition

��(x; ti) = ��(x; tf ) = 0 (5)

Now we can look at an in�nitesimal change in S:

�S =

Z tf

ti

d4x �L (6)

We can expand this using the total derivative of L:

=

Z tf

ti

d4x
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We will pick the Lagrangian density

L =
1

2
@��@

��� 1

2
m2�2 (11)

This choice can be motivated by looking at the Lagrangian for a classical har-
monic oscillator,

L =
1

2
mv2 � 1

2
m!2x2 (12)

We see that if we treat �(x) as x, @�� is analogous to v, and doing so gives us
(11).

Evaluating both sides to be
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with the Hamiltonian itself de�ned as

H =

Z
d3xH (17)

Clearly, these are de�ned very similarly to their classical de�nitions.



equations with �:

_�(x) = f�(x); Hg

=

�
�(x);

Z
d3y

�
1

2
�2(y) +

1

2
(r�(y)) � (r�(y)) +

1

2
m2�2

��
=

1

2

Z
d3x f�(x);�2(y)gx0=y0

=

Z
d3y�(y)f�(x);�2(y)gx0=y0

=

Z
d3y�(y; x0)f�(x);�(y)gx0=y0

=

Z
d3y�(y; x0)�3(x� y)

= �(x) (25)

Here we have used that the Hamiltonian is time-independent, so we can assert
that x0 = y0, allowing us to use the equal-time relation (19). We can go through
a similar process to �nd _�:

_�(x) = f�(x); Hg

=

�
�(x);

Z
d3y

�
1

2
�2(y) +

1

2
(r�(y)) � (r�(y)) +

1

2
m2�2

��
=

Z
d3y (r�(y) � f�(x);r�(y)gx0=y0

+m2�(y)f�(x); �2(y)gx0=y0)

=

Z
d3y (r�(y; x0) � r(��3(x� y))

+m2�(y; x0)(��3(x� y)))

= r � r�(x)�m2�(x) = r2�(x)�m2�(x) (26)

These �rst-order Hamilton equations give us the second-order equation

��(x) = _�(x) = r2�(x)�m2�(x)

! (���r2�(x)) +m2_�(x



4 Field Decomposition

The following plane wave equation set forms a complete basis for solutions to
the Klein-Gordon equation [1]:

�(x) = e�ik�x (30)

We can use this basis to expand � in this basis:

�(x) = C

Z
d4k e�ik�x ~�(k) ; C =

1

(2�)
3
2

(31)

This is essentially a Fourier transform of ~�(k), with C introduced for later
convenience. We can now plug this into the Klein-Gordon equation:

C(@�@
� +m2)

Z
d4k e�ik�x ~�(k) = 0

! C

Z
d4k (@�@

� +m2)e�ik�x ~�(k) = 0

! C

Z
d4k (�k2 +m2)~�(k)e�ik�x = 0 (32)

So at least one of the following must be true:

k2 = m2 (33)

~�(k) = 0 (34)

So, ~� is only non-vanishing when k2 = m2; we’ll de�ne ~� in the following way
to capture this:

~�(k) = �So,~



Now we can plug this new form into (35b):

�(x) = C

Z
dk0 d3k

1

2Ek
(�(k0 � Ek) + �(k0 + Ek))

� e�i(k
0x0�k�x)a(k0;k)

= C

Z
d3k

1

2Ek

�
ei(�Ekx

0+k�x)a(Ek;k) + ei(Ekx
0+k�x)a(�Ek;k)

�
(39)

We will replace Ek with k0 and switch k to �k in the second term to obtain

�(x) = C

Z
d3k

1

2Ek

�x)

Z
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