


1 Introduction

The Schrödinger equation, successful as it is for describing non-relativistic
quantum particles, fails in the relativistic regime. By using special relativity,
one can derive a relativistic version of the Schrödinger equation, known as
the first quantization of the Klein-Gordon equation. Unfortunately, this has
its own problems: negative energy and probability solutions, nonphysical
entities that could spell the end for a theory. Moving from quantum theory
to quantum field theory, fields are introduced as fundamental. Quantizing
the Klein-Gordon equation in quantum field theory leads to a model known
as the second quantization, which avoids many of the problems of the first
quantization.

2 Second Quantization of the Klein-Gordon
Equation

2.1 The Klein-Gordon Field

We can write the Klein-Gordon field operator as
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Inverting equations 1 and 5 and solving for the annihilation and creation
operators a and a†:
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In the last step, we use the fact that k0 = k
00. Similarly, we find that
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So the creation and annihilation operators commute with themselves for any
two k and k′, but do not commute with each other.

2.2 Relationship with the Harmonic Oscillator

The Hamiltonian is the integral of the Hamiltonian density
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Recalling the commutation relations from equations 2.1, 12, and 13, the



where the number operator N(k) = a†(k)a(k). The total number operator
is
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The commutator relations follow easily:
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We can construct any higher state in a similar way: with repeated applica-
tions of the creation operator. With normalization, these higher states can
be formed by
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where there are ni particles with momentum k
i

. It is clear that there should
be

Pl
i=1 ni particles in this state, so
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Moreover, using the identity [A, Bn] =
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13, we can see that there are indeed ni particles with momentum k
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We can also introduce a momentum operator

P =

Z
d3k kN(k) (36)

The actions of the Hamiltonian and momentum operators on our state |⌅i
can be determined easily from equations 35:
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The energy and momentum of the state, the eigenvalues of the Hamiltonian
and momentum operators, are simply the sum of the energies and momenta
of all of the particles in the state.

Consider the state in equation 14, |ki. This represents a one particle state
with four-momentum kµ = (Ek, k). Clearly,
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In a similar way, we can apply the field operator itself to the ground state:

|�(x)i = �(x) |0i = �(−)(x) |0i (40)

The phi(+) term is zero because it involves a and not a† (equation 4). The
projection onto |�i onto |ki is hk|�(x)i. This projection is a solution to the
Klein-Gordon equation, just like � itself:
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