
 

 



parameterized by their mass. When dropping the assumption of spherical 



Richard Lindquist, who derived them in a 1967 paper. The Kerr metric has two 

symmetries. One in time (stationary) and one along a certain axis 

(axisymmetric). The killing vectors that correspond to each symmetry are as 

follows: 

    Time symmetry: 𝜉𝛼 = (1, 0, 0, 0)    

 (2) 

    Axis symmetry: 𝜂𝛼 = (0, 0, 0, 1)    

 (3) 

We can also see that the absence of 𝜃 killing vectors in Kerr geometry 

correspond to the lack of spherical symmetry. Another notable feature of Kerr 

geometry is that there are singularities when  = 0, which occurs only when r = 

0 and 𝜃 = 0, and when ∆ = 0. In the first situation, space time would have an 

infinite curvature so it is useful to think of this as a “real” singularity. 

However, ∆ vanishes at two radii, r- and r+. 

     𝑟± = 𝑀 ± √𝑀2 − 𝑎2     (4) 

It turns out that r+ is the radius of the Kerr black hole’s horizon. Seemingly, 

this assumes that a  M. However, this instead indicates that the angular 



momentums of Kerr black holes are limited by the square of their mass. Kerr 

black holes with the largest possible angular momentum (J = 𝑀2) are called 

“extremal black holes”. It tends to be that matter, principally from an accretion 

disk around the black holes, spirals into the black hole and thus adds its angular 

momentum to it. This in turn means that many black holes naturally tend 

towards becoming an extremal black hole. Despite this, black holes of an 

extremal nature tend to have a Kerr parameter of only around 0.998M. This is 

because as the angular momentum of the black hole increases, the amount of 

matter orbiting it that falls into it decreases, which in turn is a result of more 

matter going through a scattering orbit. In theory, no matter with a positive 

angular momentum can fall into an extremal black hole. This means that r+ will 

always exist for a Kerr black hole and in turns means that the real singularities 

of a Kerr black hole are always behind their horizon. A notable conjecture in 

black hole physics that this conclusion supports is that of cosmic censorship, 

which is that all real singularities are not visible from infinity i.e. all real 

singularities are hidden behind a horizon from which light cannot escape. 

 



3 Horizons of Kerr Black Holes in Depth 

 The horizon of a black hole is defined as the interior boundary surface of 

the region in spacetime where light can escape to infinity from any point. This 

means that any light inside of the horizon cannot escape to infinity and that 

any light exactly along the boundary neither go out of or into the horizon. This 

means that we can think of the horizon as the 3-surface generated by null 

vectors and the generalized form of the vectors tangent to this surface are as 

follows: 

     𝑡𝛼 = (𝑡𝑡 , 0, 𝑡𝜃 , 𝑡𝜙)      (5) 



where 𝜌+ is simply  with r = 𝑟+. Evidentially, 𝜌+, 𝑟+  0, so the only solution 

to (7) is when ℓ𝜃 = 0 and ℓ𝜙 =
𝑎

2𝑀𝑟+
ℓ𝑡. So we can write the generalized solution 

for the null vectors as, 

     ℓ𝛼 = 𝑐(1, 0, 0, Ω𝐻)      (8) 

where c is some scalar and Ω𝐻 is 

     Ω𝐻 =
𝑎

2𝑀𝑟+
      (9) 

One may mistakenly assume that since r+ is constant the horizon and thus the 

black hole are spherically symmetric. However, it is important to remember that 

r+ is constant only in Boyer-Lindquist coordinates. If we apply r = r+ and t = 

constant to the Kerr metric, a surface with the following line element is 

created: 

    𝑑Σ2 = 𝜌+
2 (𝜃)𝑑𝜃2 + (

2𝑀𝑟+

𝜌+(𝜃)
)

2

𝑠𝑖𝑛2𝜃𝑑𝜙2   (10) 

The surface/horizon ends up looking like a Boston cream-filled donut, with a wide 

middle that greatly decreases as you near the poles. The total surface area of 

the horizon, calculated using (10) is as follows: 

    𝑆𝑢𝑟𝑓𝑎𝑐𝑒 𝐴𝑟𝑒𝑎 (𝐴) = 8𝜋𝑀𝑟+     (11) 



 

4 Equatorial Orbits 

 



   𝑢𝑡 =
𝑑𝑡

𝑑𝜏
=

1

∆
[(𝑟2 + 𝑎2 +

2𝑀𝑎2

𝑟
) ℯ −

2𝑀𝑎

𝑟
ℓ]    (15) 

    𝑢𝜙 =
𝑑𝜙

𝑑𝜏
=

1

∆
[(1 −

2𝑀

𝑟
) ℓ +

2𝑀𝑎

𝑟
ℯ]    (16) 

u is timelike and hence u  u = -1. Recalling this, an equation for dr/d can be 

reached since we know 𝑢𝑡, 𝑢𝜙, and 𝑢𝜃. This can be written as, 

   
𝑑𝑟

𝑑𝜏
= √ℯ2 − 1 +

𝑀

𝑟
−

ℓ2−𝑎2(ℯ2−1)

2𝑟2
+ 𝑀

(ℓ−aℯ)2

𝑟3
   (17) 

which can then be written in a similar form to the Schwarzschild metric: 

    
ℯ2−



Earlier it was asserted that particles would largely enter a scattering orbit as 

the Kerr parameter of a Kerr black hole approached 0.998M. While that fact 

may not be immediately obvious from (21), it is at least apparent that 

particles falling from infinity will have a different effect potential depending on 

whether their spiral into the black hole is with or against its rotation. 

 To prove the assertion made in part 2, consider an extremal Kerr black 

hole (a = M). Suppose we try dropping a particle with a positive angular 

momentum. Then we’d expect that, if the particle could enter the black hole, it 

would increase the angular momentum of it to the degree where r+ would cease 

to exist and, presumably, the horizon would disappear. If we, however, consider 

(18) then it is apparent that a particle with a maximum effective potential 

greater than 
ℯ2−1

2
 will not execute a bound orbit (since 

1

2
(

𝑑𝑟



angular momentum. It is then apparent that any particle with an ℓ > 2Mℯ 

cannot under the extremal Kerr black hole because it will enter a scattering 

orbit. 

 

5 The Ergosphere 

 For a non-rotating black hole an observer can, assuming they can produce 

any amount of lift, get arbitrarily close to the horizon of said black hole and 

remain stationary with respect to infinity. However, this fact changes when the 

black hole has some rotation. Evidentially, the four-velocity of the observer 

takes the form: 

     𝑢𝑜𝑏𝑠
𝛼 = (

𝑑𝑡

𝑑𝜏
, 0, 0, 0)     (22) 

and must be timelike, so 

   𝒖𝑜𝑏𝑠 ∙ 𝒖𝑜𝑏𝑠 = 𝑔𝑡𝑡(𝑢𝑜𝑏𝑠
𝑡 )2 = − (1 −

2𝑀𝑟

𝜌2 ) (𝑢𝑜𝑏𝑠
𝑡 )2 = −1  (23) 

yet if 𝑔𝑡𝑡 goes to zero, this cannot hold no matter what 𝑢𝑜𝑏𝑠
𝑡  is (i.e. an 

observer with a velocity of the form in (22) is not possible). 𝑔𝑡𝑡 goes to zero 

at r = 𝑟𝑒(𝜃), which is: 

    𝑟𝑒(𝜃) = 𝑀 + √𝑀2 − 𝑎2𝑐𝑜𝑠2𝜃    (24) 



The surface at 𝑟𝑒(𝜃) is the boundary of the space in which stationary observers 

cannot only have time components of their four-velocity. Since 0 ≤ 𝑐𝑜𝑠2𝜃 ≤ 1, 

this surface will always encompass the horizon of a rotating black hole. The space 

between the horizon and this surface is known as the ergosphere. Evidentially, 

when a = 0, there is no difference between 𝑟𝑒(𝜃) and r+, so non-rotating black 

holes do not
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