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Abstract 

In this paper, Feynman diagrams are presented as depictions of particle paths through 

spacetime. This is done in the context of the fourth-order anharmonic modification of 

the free field theory. After presenting the rules that relate a Feynman diagram to its 

corresponding mathematical term, we provide a glimpse of ƚŚĞ�ŝŵƉŽƌƚĂŶĐĞ�ŽĨ�'ƌĞĞŶ͛Ɛ�

functions in this context. To conclude the paper, we prove the logarithm property of the 

generating functional, which shows a deep relation between connected and 

disconnected diagrams.  

 

Introduction 

In Quantum Field Theory, Feynman diagrams provide a visual representation of terms in 

the series expansion of probability amplitude quantities. Equivalently, they illustrate 

how particles appear and, after propagating for some distance and possibly interacting 

with oth
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From separated to intertwined paths 

Feynman diagrams are most easily understood through a particular example. It is 

especially convenient to consider an anharmonic modification of the free field or 

Gaussian theory. In the pure free field model, the equation of motion is linear. This 

impllies that two independent fields coinciding in space, 𝜑1  and 𝜑2, will propagate 

without affecting each other. This is, each mode of vibration behaves as if the other 

were not present at all. Now, with the purpose of studying interaction between different 

solutions of our theory ʹwhich is the mathematical requirement for our theory to 

include collisions between particles-, we add the anharmonic potential term −
𝜆

4!
𝜑4 to 

the free field Lagrangian. 

As usual, let 𝐽(x) represent the source function, which indicates the locations in 

spacetime of sources and sinks of particles, 𝜑(x) be the field, and 𝑚 be the characteristic 

,ʹ 
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Integrating in series 

This section is devoted to the step-by-
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𝑒
𝑖𝜆
4! ∫ 𝑑4𝑤[

𝛿
𝑖𝛿𝐽(𝑤)

]
4

∫ 𝐷𝜑 𝑒 𝑖 ∫ 𝑑4𝑥{
1
2

[(𝜕𝜑)2−𝑚2𝜑2]+𝐽𝜑}  [3] 

Undoing in the last step the series expansion to recover the exponential form of the 𝜆 

term. Just like in a magic trick, the 𝜆 dependence of 𝑍 was decomposed and then rebuilt 

outside the integral. At this point, the remaining integral in Eq. [3] looks conveniently 

familiar. I
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Green’s functions 
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from 𝑥1 to 𝑥2, while 𝐺(𝑥1, 𝑥2, 𝑥3, 𝑥4) represents the scattering of two particles that start 

in 𝑥1, 𝑥2 and end up in 𝑥3, 𝑥4. Therefore, by translational invariance, 𝐺(𝑠)(𝑥1,···, 𝑥𝑠) only 

depends on the differences between the arguments, 𝑥𝑖 − 𝑥𝑗 (𝑖, 𝑗 in [1, 𝑠], 𝑖 ≠ 𝑗), and not 

directly on the individual 𝑥𝑖, because the probability of these kind of processes must 

obviously 



 
 

 
9 
 

 



 
 

 
10 

 

We already mentioned that any diagram can be decomposed into its connected factors. 

This is: 

𝐷𝑛𝑖
=  

1

𝑆𝐷
 ∏(𝐶𝑖)𝑛𝑖  [8]

𝑖

 

Where 𝑆𝐷 is a symmetry normalization factor which accounts for the number of  

different combinations of times 𝐶𝑖s  that can be combined to obtain 𝐷𝑛𝑖
. For 𝑛𝑖 identical 

𝐶𝑖 factors, there exist 𝑛𝑖! identical rearrangements. So overall, counting over all 𝑖, we 

find:   

𝑆𝐷 =   ∏ 𝑛𝑖! [9]

𝑖

 

And the last three equations together render: 

Z(J) ∝  ∑ 𝐷𝑛𝑖

𝑛𝑖

∝  ∑ ∏
1

𝑛𝑖 !
(𝐶𝑖)𝑛𝑖  

𝑖𝑛𝑖

 ∝  ∏  

𝑖

∑
1

𝑛𝑖!
(𝐶𝑖)𝑛𝑖

𝑛𝑖

=   ∏  𝑒𝐶𝑖

𝑖

=  𝑒∑ 𝐶𝑖𝑖  [10] 

So 𝑍 is proportional to the exponential of all connected diagrams. But, by Eq. [6], 𝑍 is 

also proportional to the exponential of 𝑊(𝐽, 𝜆). It makes sense to impose the 

normalization constraint Z(J = 0, 𝜆) = 1 ʹ which amounts, in physical terms, to disregard 

the diagrams with no sources, called vacuum diagrams. This sets the proportionality 

constant in Eq. [7], and hence in Eq. [10], to 1, if the sum is over all diagrams 𝐶𝑖 except 

to vacuum diagrams, while Eq. [6] reduces to the same statement for 𝑊 in place of the 

sum of 𝐶𝑖. That does the job! We are led to the conclusion that 𝑊(𝐽, 𝜆) constitutes 

indeed the set of connected diagrams, excluding vacuum ones. In other words, the 
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