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Figure-1 graphs a light cone (shaded region) in which we can view causal physics and

measure what happens, whereas anything outside the light cone is unable to interact with us or

other objects of the Universe on opposite sides of the light cone. The two squiggly-lines

represent photons from the CMB, each beginning outside the realm of causality with us and one

another. However, once they’ve traversed into the light cone, we are able to measure and view

how they interact with other cosmological objects. It turns out that, despite being absurdly out of

touch with one another, both photons will carry similar energies and thus obtain similar

temperatures. This is the Horizon Problem: these photons could not possibly communicate to one

another before they reached the light cone, or crossed within the Comoving Horizon, yet if they

share similar temperatures Compton Scattering tells us they probably scattered from the same

surface.

How is this possible? For years physicists tried to explain the phenomena to no avail,

until some time in the 1980’s the idea of “inflation” began working its way into the theory.

Cosmologists today are not entirely sure the Inflation Model is truly the answer to the Horizon

Problem, but another theory that solves many of the questions in the Horizon Problem has yet to

be developed as much as Inflation has been, thus it is currently the “best guess.”

The theory states that for a short period of time at the very genesis of the Universe,

physical distances of microscopic scale blew-up to cosmic proportions. For instance, an

Angstrom of space (about 10-10 meters) grew to Megaparsec scale ( about 3*106 lightyears) in

the span of perhaps a few fractions of a second. This exponential growth is why the term

“inflation” is used in descriptions of the theory, but just “how big” was this growth?
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To attempt a derivation, the usage of Modern Cosmology by Scott Dodelson will be

necessary. Most of the math is taken from Chapter 6, but other ideas such as the CMB and

Boltzmann Equations come from earlier chapters. To start, remember that Inflation took place

before anything else happened after the Big Bang. While the Universe was still a hot soup of

photons, Inflation occurred and basically stretched the physical space where these photons

existed. It expanded so quickly that the photons were unable to continue interacting with each

other, or anything else for that matter, thus whatever they scattered off before Inflation decided

their energies. Figure 2 exemplifies this expansion.

Figure 2, Dodelson pg. 148
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The Hubble Rate is a ratio of how fast the Universe expands divided by the total distance

it has expanded, giving it units of . Due to these units, inverting the Hubble Rate(𝑠𝑒𝑐𝑜𝑛𝑑𝑠)−1

gives a measure of just how long the Universe has existed, with current estimates around 14

billion years. With these definitions, we can now define the Comoving Hubble Radius, the

expression of the same name below. This defines the distance particles can travel over one

expansion time, or over the time it takes for the scale factor, , to double (Dodelson pg. 146).𝑎(𝑡)

Comoving Hubble Radius

𝑅 = (𝑎(𝑡) · 𝐻(𝑎))−1

To connect this back to the theory of Inflation, remember that it is the idea that physical

distances were much, much smaller than they are now, thus it makes sense to look at how the

Comoving Hubble Radius needed to change during this period of Inflation to get the

cosmological scale we see today. Referring back to Figure 2, before inflation the Comoving

Horizon resided within the Hubble Volume, but after Inflation it seems the Hubble Volume

“shrunk,” thus allowing particles that were in causal contact before are no longer in contact

afterwards. T
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The primes in the equation are used to follow Integration rules, the variable integrated

over cannot also be a limit to the integral, but what we see is that the Comoving Horizon is the

logarithmic integral of the Hubble Radius. This implies then that shrinking the Hubble Radius

corresponds to exponential growth. However, what would cause the Hubble Radius to shrink?

During eras of radiation dominant or matter dominant epochs, the Hubble Radius will increase,

so if it is to decrease, there must be some other dominant form of energy density. Some believe

this to be “dark energy,” with representation in the Einstein Equations as the Cosmological

Constant , but the mechanism isn’t the focus of this paper.Λ

Since we cannot base the evolution of the Hubble Radius on what type of energy

dominates the Universe during Inflation, we can instead define it by how the scale factor, ,𝑎(𝑡)

evolves during this time period. The common way to do this is to look at how we defined the

Hubble Rate, , and hold the value itself to be constant. Rearranging Hubble Rate then𝐻(𝑎) 𝐻

yields the following expressions:

𝑑𝑎
𝑎 = 𝐻𝑑𝑡

𝑙𝑛(𝑎(𝑡)) − 𝑙𝑛(𝑎
𝑒
(𝑡)) = 𝐻(𝑡 − 𝑡

𝑒
)

⇒ 𝑎(𝑡) = 𝑎
𝑒
𝑒

𝐻(𝑡−𝑡
𝑒
)

Here all subscript-e variables represent values at the end of Inflation, and the derivation is

based on Dodelson page 147. Since we chose to hold constant, this restriction will also apply𝐻

to the Comoving Hubble Rate and therefore also to the Comoving Horizon. This means any
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