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Abstract

The Dirac equation describes spin-1/2 particles with a consideration

for the e↵ects of special relativity. In this paper, we explore two major

emergent results of the Dirac equation. First, we see how the notions of

helicity and chirality arise from the Dirac equation, and exactly corre-

spond to one another in the massless limit. Second, we verify that the

Dirac equation is consistent with the Schrödinger equation in the non-

relativistic limit, both for a free particle and for a charged particle in an

external magnetic field.

1 Introduction

The Dirac equation, named after Paul Dirac, represented an attempt to incor-
porate the e↵ects of special relativity into quantum mechanics, and was intro-
duced in 1928 [2]. The result was a wave equation describing the relativistic
behavior of spin-1/2 particles, such as electrons and neutrinos. A major de-
parture from previous quantum theories, Dirac’s equation describes particles



particles of a given chiral handedness express helicity of the same handedness.

2.1 The helicity operator

The Dirac Hamiltonian
H = ↵ · p + �m (1)

does not necessarily commute with orbital angular momentum or spin angular
momentum, but with total angular momentum. When the particle is at rest,
however, p = 0, and so

[Si, H] = [↵̃i/2, H] = �i✏ijk↵

,H



Taking the sum and the di↵erence of these equations, we get

(p0 � � · p)(u1 + u2) = m(u1 � u2),

(p0 + � · p)(u1 � u2) = m(u1 + u2).

By defining

ul =
1

2
(u1 � u2), (8)

ur =
1

2
(u1 + u2), (9)

our equations can be rewritten as

(p0 � � · p)ur = mul,

(p0 + � · p)ul = mur.

These equations are coupled via the mass term. By letting mass go to zero, we
have the uncoupled equations

p0ur = � · pur, (10a)

p0ul = �� · pul. (10b)

Since mass is a Lorentz scalar, these equations are Lorentz covariant. However,



2.3 On chirality





Hence any 2-component spinor can be uniquely decomposed into components
of these operators, which project into spaces of positive and negative helicity.
This notion can be generalized to 4-component spinors by defining the following
helical projection operator:

P
(±)
4⇥4 =

✓
P (±) 0

0 P (±)

◆
. (20)

It is trivial to check that
[PR,L, P

(±)
4⇥4] = 0,

which implies that spinors can be simultaneous eigenstates of chirality and he-
licity in the massless limit.

We have seen that, in the massless limit, particles of positive chirality have
positive helicity, and likewise, particles of negative chirality have negative helic-
ity. But this is only true for massless particles. Chirality can be thought of as
an inherent trait of particles, whereas helicity depends on the momentum of a
particle. For massive particles, it is possible to Lorentz boost to di↵erent frames
of reference to change helicity. But this is not true for massless particles; hence
chirality corresponds exactly to helicity for massless particles.

2.4 Properties of eigenstates of the helicity projections

In this section, we will derive properties of right-handed spinors and state the
analogous properties of left-handed spinors, since their derivation is nearly iden-
tical.

Write positive and negative energy solutions to the massless Dirac equation
with right-handed chirality as

u(+) =
1

2
(I + � · p̂)ũ,

v(+) =
1

2
(I + � · p̂)ṽ.

Choose

ũ =

✓
1
0

◆
, ṽ =

✓
0
1

◆
.

Then the positive and negative energy solutions can be written explicitly as

u(+)(p) =
1p

2|p|(|p| + p3)

✓
|p| + p3

p1 + ip2

◆
,

v(+)(p) =
1p

2|p|(|p| � p3)

✓
p1 � ip2

|p| � p3

◆
.

It is simple to check that these spinors satisfy

u(+)†u(+) = v(+)†v(+) = 1,

u(+)†(p)v(+)(�p) = v(+)†(�p)u(+)(p) = 0,

u(+)u(+)† = v(+)v(+)† =
1

2
(I + � · p̂).
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The 4-component spinors defined by (18) further satisfy

u†
RuR = v†

RvR = |p|, (21a)

u†
R(p)vR(�p) = v†

R(�p)uR(p) = 0, (21b)

uRu†
R = vRv†

R =
|p|
2

✓
P (+) P (+)

P (+) P (+)

◆
. (21c)

Note that, with p0 = |p|, we can write

1

4
/p�0(I + �5) =

1

4

✓
p0 �� · p

� · p �p0

◆ ✓
I 0
0 �I

◆ ✓
I I
I I

◆

=
|p|
4

✓
I � · p̂

� · p̂ I

◆ ✓
I I
I I

◆

=
|p|
2

✓
P (+) P (+)

P (+) P (+)

◆
.

Hence (21c) can be rewritten as

uRu†
R = vRv†

R =

(R+�





This equation results in two equations given by

� · (p � eA)uS = (E � m)uL, (31a)

� · (p � eA)uL = (E + m)uS. (31b)

From (31b), we have

uS =
� · (p � eA)

E + m
uL ⇡ � · (p � eA)

2m
uL, (32)

in the non-relativistic limit. Substituting (32) into (31a) yields

[� · (p � eA)]
� · (p � eA)

2m
uL ⇡ (E � m)uL. (33)

Let us compute the products that appear in (33) to reduce notation. Note
that

[



Notes

This paper represents a reproduction of my lecture notes on the properties of
the Dirac equation, which are derived from Section 3 of Das’ book on quantum
field theory [1]. I have cut down much of the material and added some useful
references to get a better picture of the utility and historical context of the
content. Consider the text of this paper to be a script and the equations to be
things that should be drawn on the chalkboard during the lecture.
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