


1 Introduction

At this point in the course, the Klein-Gordon equation had been studied fairly thoroughly. We have derived
the Lagrangian and Hamiltonian densities that would result in the Klein-Gordon equation and defined
the field operator in terms of the creation and annihilation operators. However, when initially developing
the tools needed to derive this information, we made a key assumption in that we stipulated that the field
operator must be a real valued function. While this allowed us to develop many important results, ultimately
it ignores many solutions to the equation. Therefore, it is my goal to show how the earlier results of the
purely real solutions could be applied when the field operator is complex.

2 Derivation of the Lagrangian and Hamiltonian

2.1 Available Equations

As before, we have the original Klein-Gordon equation

(@
µ

@µ + m2)�(x) = 0. (1)

However, since we also know that � 6= �†, we also have

(@
µ

@µ + m2)�†(x) = 0. (2)

We can also write � and �† in terms of purely real functions by taking one real function to act as the real
part of � and another to be the imaginary part. Therefore, we have

�(x) =
1p
2

(�1(x) + i�2(x)) (3)

�†(x) =
1p
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(�1(x) � i�2(x)) . (4)

We can also invert these relations in order to find �1 and �2 in terms of � and �†
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(�(x) + �†(x)) (5)

�2(x) =
�ip

2
(�(x) � �†(x)). (6)

By substituting (3) and (4) into (1) and (2), we can easily see that we have
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@µ + m2)�1(x) = 0 (7)
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@µ + m2)�2(x) = 0. (8)
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However, by factoring the terms in this Lagrangian density, we can rewrite it in terms of � and �†

L =
1

2
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µ

(�1 � i�2)@µ(�1 + i�2) � m2

2
(�1 � i�2)(�1 + i�2)

= @
µ

�†@µ� � m2�†�. (10)

We note that even though � and �† are clearly not Hermitian, the Lagrangian density which describes this
is in fact Hermitian.

2.3 Hamiltonian Density

2.3.1 �1 and �2

Now that we have the Lagrangian density, we can determine what the Hamiltonian density for this system"



We can find the complex conjugate of the momentum operator in a similar fashion

⇧†(x) =
@L

@�̇(x)
= �̇†

=
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(⇧1(x) � i⇧2(x)) (16)

As before, we can determine the commutation relations of the system by noting that the � and �† are
independent variables.

[�(x), �(y)] = [�(x), �†(y)] = [�†(x), �†(y)] = 0 (17)

[⇧(x), ⇧(y)] = [⇧(x), ⇧†(y)] = [⇧†(x), ⇧†(y)] = 0 (18)

[�(x), ⇧†(y)] = [�†(y), ⇧(y)] = i�3(x � y) (19)

The Hamiltonian density therefore can be written as

H = ⇧�̇† + ⇧†�̇ � L
= ⇧†⇧ + ⇧†⇧ � �̇†�̇ + r�† · r� + m2�†�

= ⇧†⇧ + r�† · r� + m2

†
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�†)
� Kµ, (36)

where Kµ is defined by

L (�0(x), @
µ

�0(x)) � L (�(x), @
µ

�(x)) = @



Therefore, the |ki is an eigenvector of the charge operator with eigenvalue. A similar calculation can be done
on |k̃i to determine that

Q|k̃
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V = m2�†� +
�

4
(�†�)2 (53)

By inspection, we can see that the minimum of the potential is 0, since it is composed of purely nonnegative
terms. By considering the concept of a classical field (which we label as �
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Since the second derivative is negative when �1c

= �2c

= 0 and positive when �1c

= ±2mp
�

and �2c

= 0, the

first point corresponds to a local maximum, and the second to a local minimum. This can be seen more
clearly in the figure 1. This figure shows the potential for this system, often called the Mexican hat potential.

Figure 1: The Mexican hat potential which represents the complex Klein-Gordon equation [2]

7 Conclusion

We can now see that the complex solutions to the Klein-Gordon equation provide a wealth of information
that cannot be found simply from the real solutions. The complex solutions allow for an interpretation
of anti-particles that does not require negative energies, making it much more attractive than Dirac’s hole
theory. These solutions also allow the Feynman Green’s function to defined in terms of the vacuum state.
Lastly, the potential associated with the complex fields is one that leads to spontaneous symmetry breaking,
the details of which are unfortunately outside the scope of this paper.
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