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1 Introduction

A method is more important than a discovery, since the right method will lead to new and
even more important discoveries.

Lev Landau (1908-1968)

The objective of this course was to introduce ourselves to quantum information theory, a booming
topic in physics with tremendous practical applications. This paper is based on a lecture I gave for
the Kapitza Society.

In the �rst section we will learn about the density operator: a powerful computing tool in quan-
tum mechanics. We will then have a brief overview of Lagrange multipliers and how to use them
to maximize entropy and retrieve the canonical ensemble’s properties. Finally, we will revealed a
surprising relation between statistical and quantum mechanics.

2 The Density Operator

2.1 Quantum Mechanical Ensembles

We generally may not have perfect knowledge of a prepared quantum state. Suppose a third party,
Bob, prepares a state for us and only gives a probabilistic description of it, i.e., Bob selects j xi with
probability pX(x), where pX is the probability distribution for the random variable X, and x is in
some alphabet �. We can summarize this information by de�ning an ensemble E of quantum states

E � fpX(x); j xigx�� (1)

For example, E =
��

1
3
; j1i

�
;
�

2
3
; j3i

�	
. If this ensemble is span by fj0i ; j1i ; j2i ; j3ig, then the state

is j0i with probability 0, j1i with probability 1
3
, j2i with probability 0, and j3i with probability 2

3
.

Of course, the sum of the probabilities adds up to 1.
Consider a system with

E = fpi; j iigi�N (2)

with h ij ji = �ij. Suppose i = 1, then E = fp1; j 1ig = f1; j 1ig. If we measure an observable Â
in E , then D

Â
E

= h 1j Â j 1i

= 1 h 1j Â j 1i
= p1 h 1j Â j 1i

(3)

Now, what if E = f(p1; j 1i) ; (p2; j 2i)g? If you think as p1 and p2 as giving weight to their
corresponding state’s expectation value, you can guessD

Â
E

= p1 h 1j Â j 1i+ p2 h 2j Â j 2i

and �nally, if E = fpi; j iigi�N , thenD
Â
E

=
X
i

pi h ij Â j ii (4)
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Claim:

I =
X
n

jni hnj (5)

where fjnign�N is a complete set, i. e., �nm = hnjmi, and I is the identity operator.

Proof:

I jmi =
P

n jni hnjmi =
P

n jni �nm = jmi
QED

Thus, D
Â
E

=
X
i

pi h ij Â j ii

=
X
i

pi h ij IÂ j ii

=
X
i

pi h ij

 X
n

jni hnj

!
Â j ii

=
X
i

pi
X
n

hnj Â j ii h ijni

=
X
n

hnj Â

 X
i

pi j ii h ij

!
jni

=
X
n

hnj Â�̂ jni

(6)

where

�̂ =
X
i

pi j ii h ij (7)

is the density operator.

For some matrix B, we have Bij = hijB jji, thus
D
Â
E

=
P

n(Â�̂)nn = Tr(Â�̂), which gives the

very useful and important result D
Â
E

= Tr(Â�̂) (8)

Note that the trace is independent of which complete set you use. Suppose fj�iigi�N is a complete
set, then using (5) we get

Tr(B) =
X
i

hijB jii =
X
i

hijBI jii

=
X
i

hijB

 X
j

j�ji h�jj

!
jii

=
X
j

h�jj

 X
i

jii hij

!
B j�ji

=
X
j

h�jjB j�ji

(9)

thus, just think of the complete basis fj�iigi�N , where for �i the ith component is 1 and the other
components are 0, to build your intuition.
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Claim 2: Tr(�̂) = 1

Proof:

Tr(�̂) =
X
n

hnj �̂ jni =
X
n

hnj

 X
i

pi j ii h ij

!
jni

=
X
i

pi h ij

 X
n

jni hnj

!
j ii

=
X
i

pi h ij I j ii

=
X
i

pi h ij ii

=
X
i

pi = 1

(20)

QED
where we used the normalization property of the wavefunction, and (5).

Claim 3: �̂ can be diagonalized to the following

�̂ =

0BBBBBB@
p1 0 ::: 0
0 p2 0 ::: 0

:
:

:
pj�j

1CCCCCCA (21)

where j�j is the size of the set.

Proof:

We have that �̂ =
P

i pi j ii h ij, thus

�̂ j ki =
X
i

pi j ii �ik = pk j ki (22)

so �̂ as eigenvectors fj ikgk with eigenvalues fpkgk. Let

M =
�
j 1i j 2i :::

�� j�j�� (23)

Then

�̂M =
�
�̂ j 1i �̂ j 2i ::: �̂

�� j�j�� =
�
p1 j 1i p2 j 2i ::: pj�j

�� j�j�� (24)

which we can rewrite in a more enlightening way

�̂M =
�
j 1i j 2i :::

�� j�j��
0BBBBBB@
p1 0 ::: 0
0 p2 0 ::: 0

:
:

:
pj�j

1CCCCCCA = M

0BBBBBB@
p1 0 ::: 0
0 p2 0 ::: 0

:
:

:
pj�j

1CCCCCCA (25)

if M is invertible, we get

5



M�1�̂M =

0BBBBBB@
p1 0 ::: 0
0 p2 0 ::: 0

:
:

:
pj�j

1CCCCCCA (26)

QED

2.3 Pure vs. Mixed Quantum States

Pure: We know the system is in a particular state j i ) E = f1; j ig.
Mixed: We don’t know the system is in a particular state j i, i.e., the system could be in several
states fj iigi�N ) E = fpi; j iigi�N .

Using Claim 3, we can de�ne pure and mixed quantum states using the density operator. A
mixed state would be given by (21), and a pure state would be given by

�̂ =

0BBBBBB@
0 0 ::: 0
0 0 0 ::: 0

:
1

:
0

1CCCCCCA (27)

since pk = 1 and pi = 0 for all i 6= k.
We will come back to this when we will be discussing statistical mechanics and entropy.

2.4 Why is � called the Density OperatorD
Â
E

= Tr(Â�̂) =
P

m;n hnj Â jmi hmj �̂ jni

which becomes for a continuous basisD
Â
E

=

Z
d3x

Z
d3x

0 hxj Â
���x0EDx0��� �̂ jxi (28)

Let’s focus on


x
0�� �̂ jxi.

D
x
0
��� �̂ jxi =

D
x
0
��� X

i

pi j ii h ij

!
jxi

=
X
i

pi

D
x
0
��� iE h ijxi

=
X
i

pi i(x
0
) �i (x)

(29)

If x = x
0
, then hxj �̂ jxi =

P
i pij i(x)



3 The Canonical Ensemble

3.1 Lagrange Multipliers

Let S be a surface given by f(x; y; z) = c for some constant c. What if you want to �nd which point
on this surface is the closest to the origin? To do this we need some background. A curve on this
surface is de�ned by r(t) = (x(t); y(t); z(t)). Now, the derivative of this curve, r

0
(t), is tangent to the

curve at any point P = (x(t); y(t); z(t)). Let’s take one of them P0 = (x(0); y(0); z(0)) = (x0; y0; z0).
At P0, r

0
(t) is tangent to the curve and thus tangent to S, which means it lies on the tangent plane

of f(x; y; z) at P0. This means that if a vector is perpendicular to r
0
(t) at P0, then it is perpendicular

to the tangent plane of S at P0.

Claim: The gradient of f is perpendicular to r
0
(t) at any point.

If we can prove that rf jP0 � r
0
(t0) = 0 for some arbitrary point P0 we would be done. But

df

dt
jP0 =

@f

@x
jP0

dx

dt
jt0 +

@f

@y
jP0

dy

dt
jt0 +

@f

@z
jP0

dz

dt
jt0 = rf jP0 � r

0
(t0) (30)

but f(x:y:z) = c where c is constant, thus df
dt
jP0 = 0.

QED

FIG. 1. Lagrange Multipliers

Let’s go back to our minimization problem. Try the problem in two dimension, where S is a
curve. Take a compass and start drawing circles with a common center at the origin. Start from a
small one and increase the radius of the next one. Continue increasing the radius until a circle enters
in contact with S



where g is the function containing the constraint, and � is the famous Lagrange multipliers. The
general case is given by

rf =
X
i

�rgi (32)

3.2 Mixed States and Entropy

We know that the entropy of a system is given by

S = �k
X
i

pilnpi = �kTr(�̂ln�̂) (33)

�̂ is diagonalized. What are the fpig in the minimum entropy state?
From (33) it’s easy to see that S is a of positive quantities ) S � 0 ) Smin = 0. Recall that
we need

P
i pi = 1, which means that pk = 1 and pi = 0 8i 6= k. This might ring a bell (no pun

intended), we have in this case a pure state. Thus, in order to have minimum entropy, an ensemble
must be composed of a pure state.

Now what about maximizing entropy? This is where Lagrange multipliers come handy. In this
case, f = S, and g =

P
j pj � 1. Looking back at (32), we must have

r
 
�k
X
i

pilnpi

!
= �r

 X
i

pi � 1

!
(34)

We can simplify this quite a bit

r
 
�k
X
i

pilnpi � �

 X
i

pi � 1

!!
=
X
i

�
�k(rpi)lnpi � kpi

rpi
pi
� �rpi

�
=
X
i

(�k(lnpi + 1)� �) rpi

(35)

but rpi is arbitrary, thus

�k(lnpi + 1)� � = 0() pi = e�
�
k
�1 (36)

Using our constraint
P

i pi = 1, we get

j�jX
i=1

e�
�
k
�1 = 1() e�

�
k
�1 =

1

j�j
() pi =

1

j�j
(37)

This means that in order to maximize entropy, we want a uniform distribution. This gives us
that a state is a maximally mixed state if every eigenvalue of the density operator is equal, i.e.,

�̂ =
1

j�j

0BBBB@
1 0 ::: 0
0 1 0 ::: 0

:
:

1

1CCCCAj0 T-.o7d [j25
CThis gives us

:
:

�̂



3.3 Statistical Mechanics

To some extent, statistical mechanics is an assumption about the density matrix for a macroscopic
system. The assumptions (constraints) are

(a)
P

i pi = 1.

(b)
D
Ĥ
E

= E is known.

Constraint (b) can be expressed in a more useful way since from Schroedinger equation
Ĥ j ki = Ek j ki ) h kj Ĥ j ki = Ek, which givesD

Ĥ
E

=
X
k

pk h kj Ĥ j ki =
X
k

pkEk = E (40)

Since we have two constraints, using equation (32) we have that

r
 
�k
X
i

pilnpi

!
= �1r

 X
i

pi � 1

!
+ �2r

 X
i

piEi � E

!
(41)

which we can simplify to

r
 
�k
X
i

pilnpi � �1

 X
i

pi � 1

!
� �2r

 X
i

piEi � E

!!
=
X
i

(�k(lnpi + 1)� �1 � �2Ei) rpi

(42)
but rpi is arbitrary, thus

�k(lnpi + 1)� �1 � �2Ei = 0() pi = e�
�1
k
��2Ei

k
�1 (43)

Using our constraint
P

i pi = 1, we get

e�
�
k
�1 =

1

Z
(44)

with

Z =
X
i

e�
�2Ei
k (45)

Letting �2

k
= �, we get the well known canonical ensemble equations

pi =
e��Ei

Z
(46)

and
Z =

X
i

e��Ei (47)
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4 Quantum Mechanics and Statistical Mechanics

4.1 Mixed State, Pure State, and Temperature

The internal energy of a monoatomic gas is given by E = 3
2
NkT ) E / T , but looking back at

(47), we must have � / 1
E

since the exponential must be unitless. These two relations imply that
� / 1

T
. Thus,

T !1) � ! 0+ ) Z = j�j ) pi = 1
j�j

This means that all states are equally probable, which is what we found for the maximally mixed
state. What about T ! 0+? I’m sure you can guess what is about to happen

Z =
X
i=0

e��Ei = e��E0

X
i=0

e��(Ei�E0) = e��E0 + e��E0

X
i=1

e��(Ei�E0) (48)

therefore since Ei > E0 8 i > 0, we get

T ! 0+ ) � !1) Z ! e��E0 (49)

this means that

T ! 0+ ) � !1) pk =
e��Ek

Z
! e��(Ek�E0) (50)

thus, pk = 0 8 k 6= 0 and p0 = 1. Therefore all the particles are in the ground state E0. This
exactly what we found for a pure state.

4.2 Imaginary Statistical Mechanics

De�nition: (Function of a Hermitian Operator) Suppose that a Hermitian operator A has a spectral
decomposition A =

P
i ai jii hij for some orthonormal basis fjiig. Then the operator f(A) for some

function f is de�ned as follows:f



In quantum mechanics, we can determine how a quantum state evolves with time using the
operator U(t).

j (t)i = U(t) j (0)i (56)

We can get it from looking at Schroedinger equation.

Ĥ j (t)i = i�h
@

@t
j (t)i ) j (t)i = e

�iĤt
�h j (0)i (57)

thus, U(t) = e
�iĤt

�h .
By making the change

t! �i��h (58)

we get

U(t)! U(�i��h) = e��Ĥ (59)

which gives us the startling result that

Tr[U(�i��h)] = Tr
�
e�

� whic



but then T
0

= cos �(z tan � + T ). We can simplify this by using the fact that sec2 � + tan2 � = 1
we get sec � =

p
1� v2 = 1

cos�
. Thus


