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1 Introduction

A method is more important than a discovery, since the right method will lead to new and
even more important discoveries.

Lev Landau (1908-1968)

The objective of this course was to introduce ourselves to quantum information theory, a booming
topic in physics with tremendous practical applications. This paper is based on a lecture | gave for
the Kapitza Society.

In the rst section we will learn about the density operator: a powerful computing tool in quan-
tum mechanics. We will then have a brief overview of Lagrange multipliers and how to use them
to maximize entropy and retrieve the canonical ensemble’s properties. Finally, we will revealed a
surprising relation between statistical and quantum mechanics.

2 The Density Operator

2.1 Quantum Mechanical Ensembles

We generally may not have perfect knowledge of a prepared quantum state. Suppose a third party,
Bob, prepares a state for us and only gives a probabilistic description of it, i.e., Bob selects j i with
probability px(X), where px is the probability distribution for the random variable X, and X is in
some alphabet . We can summarize this information by de ning an ensemble E of quantum states

E fox (X)) xig, 1)

For example, E = %;jli ; %;j3i . If this ensemble is span by fj0i ;jli;j2i;j3ig, then the state
is JOi with probability 0, j1i with probability % j21 with probability 0, and j3i with probability %
Of course, the sum of the probabilities adds up to 1.
Consider a system with

E=1pi;) ilg; n (2
with h jj ji = ;. Suppose i =1, then E = fpy;j 1ig = f1;j 1ig. If we measure an observable A
in E, then

D E

A =h jAj i
=1h 4jAj 4i )
=pih 4jAj 4
Now, what if E = f(py1;j 11);(p2;] 21)g? If you think as p; and p, as giving weight to their
corresponding state’s expectation value, you can guess

D E
A =pyh 1jAj 1l +pyh 2jAj 2l

and nally, if E = fp;;j iig; \, then

D E X
A = pih ijAj i (4)



Claim:

X
I = jnihnj 5)
n

where fjnig, \ is a complete set, i. e., ,m = hnjmi, and I is the identity operator.

Proof:

.. P P L
Ijmi= _jnihnjmi= " _jni ,n = jmi

QED
Thus,
D E X
A = pih ijAj i
<
= pih 1A i
i 1
X - X. - .- - -
= phaj  jnibnj Aj i
X ox " (6)
= m jAj iih gjni
i n ]
> > i
= hnjA Pij ith §j jni
k i
= hnjA7jni
n
where
X - - -
A= pij ith (M)
i
is the density operator.
DE p
For some matrix B, we have Bj; = hijBjji, thus A =" (A", = Tr(A%), which gives the
very useful and important result D E
A =TrA» (8)

Note that the trace is independent of which complete set you use. Suppose fj jig; , is a complete
set, then using (5) we get

X XX
Tr(B)=  hijBjii=  hijBIjii
i i 1
> > }
= hij B jjih jj jii
i J 1
= hjj jithij Bj ji
k i
= h;jBjji

J
thus, just think of the complete basis fj iig; ,,, where for ; the i*" component is 1 and the other
components are 0, to build your intuition.









Clam2: Tr(®M =1

Proof:
1
X X X
Tr(N = hnj A jni = hnj pij ith i Jni
n n i 1
X - X. - .- - -
= pih i jnihnj j i
>i< n
= pihjbj i
>
= pih ij il
X
= pi:]_

where we used the normalization property of the wavefunction, and (5).

Claim 3: ~ can be diagonalized to the following

O 1
::: 0

EO pz o OE
Pj j

F)
We have that *= ,p;j ith ;j, thus

where j j is the size of the set.

Proof:

- - X - - - -
ANokl= 0 pi) il ik =Pk okl

so " as eigenvectors fj i,g, with eigenvalues fpxg,. Let

M= j qi j i i
Then
"M = Aj 1i Aj 2i A i = le 1i pzj 2i . pjj i
which we can rewrite in a more enlightening way
@) 1 O
pp 0 0 pp 0
0 p 0 =2 O 0 p O
M= J 10 | o0 i o =M o
Pi |

if M is invertible, we get

Pj j

(20)

QED

(21)

(22)

(23)

(24)

(25)



O R 1
0 p 0 =z O
M 1AM = T (26)

QED

2.3 Pure vs. Mixed Quantum States

Pure: We know the system is in a particular state j i ) E = f1;j ig.
Mixed: We don’t know the system is in a particular state j i, i.e., the system could be in several
states fj ig; > E =Tpi;j ilg; -

Using Claim 3, we can de ne pure and mixed quantum states using the density operator. A
mixed state would be given by (21), and a pure state would be given by

(@) 1
0 0 :: 0
00 0 =0
/\= :
. (27)
0

since px =1 and p; =0 for all i & k.
We will come back to this when we will be discussing statistical mechanics and entropy.

2.4 Why is called the Density Operator
D E

F)
A =Tr(Ay=".,njAjmihmj~jni

which becomes for a continuous basis

pE £ 2 ED
A = dx dExhxjAx x Ajxi (28)
Let’s focus on X "jxi.
1
D . D ., X -
X AXi= X pij ith §j jxi
> D' E
= pi X i hjxi (29)
x
= piixX) i

0 ... P
If x = x, then hxj*jxi = pij i(X)



3 The Canonical Ensemble

3.1 Lagrange Multipliers

Let S be a surface given by fT(X;y;z) = ¢ for some constant c. What if you want to nd which point
on this surface is the closest to the origin? To do this we need some background. A curve on this
surface is de ned by r(t) = (x(t); y(t); z(t)). Now, the derivative of this curve, r'(t), is tangent to the
curve at any point P = (x(t); y(t); z(t)). Let’s take one of them Py = (x(0); y(0); z(0)) = (Xo; Yo; Zo).
At Py, r'(t) is tangent to the curve and thus tangent to S, which means it lies on the tangent plane
of £(x;y;z) at Po. This means that if a vector is perpendicular to r'(t) at Py, then it is perpendicular
to the tangent plane of S at P,.

Claim: The gradient of f is perpendicular to r'(t) at any point.

If we can prove that rfjs, r'(t;) = 0 for some arbitrary point P, we would be done. But

df . of. dx. of. dy. of. dz. .
gilPe = @_XJPO qle ™t @JPO e @_ZJPoaJto = rfjp, r(to) (30)
but f(x:y:z) = ¢ where c is constant, thus %jp0 =0.
QED
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FIG. 1. Lagrange Multipliers

Let’s go back to our minimization problem. Try the problem in two dimension, where S is a
curve. Take a compass and start drawing circles with a common center at the origin. Start from a
small one and increase the radius of the next one. Continue increasing the radius until a circle enters
in contact with S



where g is the function containing the constraint, and is the famous Lagrange multipliers. The
general case is given by

>
rf= [ gl] (32)

3.2 Mixed States and Entropy

We know that the entropy of a system is given by
>
S= k pilnpi= kTr(Nn% (33)
i
~is diagonalized. What are the fp;g in the minimum entropy state?

From (337\_,it’s easy to see that S is a of positive quantities ) S 0 ) Smin = 0. Recall that
we need ,pi = 1, which means that p, = 1 and p; = 0 8i & k. This might ring a bell (no pun
intended), we have in this case a pure state. Thus, in order to have minimum entropy, an ensemble
must be composed of a pure state.

Now what about r]claximizing entropy? This is where Lagrange multipliers come handy. In this
case, f =S,andg=;p; 1. Looking back at (32), we must have
1 1

> >
r Kk pilnpi = r pi 1 (34)
i i
We can simplify this quite a bit
> > > p;
r k pilnp pi 1 = k(rp)lnpi  kpi—  1p;
i i Sk Pi (35)
= ( k(lnpi+1) ) wrp;

but rp; is arbitrary, thus

k(lnpi+1) =0 pi=e & * (36)

: P
Using our constraint  , p; = 1, we get

b2
e '=10Qer == Op=:
i=1 J ) J)
This means that in order to maximize entropy, we want a uniform distribution. This gives us

that a state is a maximally mixed state if every eigenvalue of the density operator is equal, i.e.,
O 1
0 rE O
1

1
0 0O = 0
] ] : -.07d [j25
S

(37)



3.3 Statistical Mechanics

To some extent, statistical mechanics is an assumption about the density matrix for a macroscopic

system. The assumptions (constraints) are

P
@pip=1
(b) A =E is known.

Constraint (b) can be expressed in a more useful way since from Schroedinger equation

Hj «i =Exj «i D h «jA] «i = Ex, which gives
D E X ><
A = phWjAj«i=  pEc=E
k k

Since we have two constraints, using equation (32) we have that
1 1

X X X

r k pilnpp = 1r pi 1 + ,r pPiEi

which we can simplify to

L L |
> > >

X
r  k pilnpi pi 1 o piEi E = ( k(lnp; +1)

but rp; is arbitrary, thus

k(npi+1) 1 LE=0Q p=e * "«

P
Using our constraint ; p; = 1, we get

.1
e k- = >
with
< 2Ej
Z = e K
i
Letting 2 = , we get the well known canonical ensemble equations
e Ei
pi = Z
and >
Z= e Fi

1

(40)

(41)

2Ei) Ip;
(42)

(43)

(44)

(45)

(46)

(47)



4 Quantum Mechanics and Statistical Mechanics

4.1 Mixed State, Pure State, and Temperature

The internal energy of a monoatomic gas is given by E = 3NkT ) E / T, but looking back at

(47), we must have / é since the exponential must be unitless. These two relations imply that
/ L. Thus
T )

TE1D ¥10°DZ=jjdp=7

This means that all states are equally probable, which is what we found for the maximally mixed
state. What about T ¥ 0™? I’m sure you can guess what is about to happen

Z = e EBi=p FEo e (Ei Eo)—p EBoypp BEo e (Ei Eo) (48)
i=0 i=0 i=1
therefore since E; > Eq 8 1 > 0, we get
TIO") ¥1)Y)zue Fo (49)

this means that

T 10°) !1)pk=ez 1e G E (50)

thus, px =0 8 k & 0 and p, = 1. Therefore all the particles are in the ground state Eo. This
exactly what we found for a pure state.

4.2 Imaginary Statistical Mechanics

De nition: (Functiori:pf a Hermitian Operator) Suppose that a Hermitian operator A has a spectral

decomposition A =, a;jiihij for some orthonormal basis fjiig. Then the operator f(A) for some
function T is de nedfas follows:



In quantum mechanics, we can determine how a quantum state evolves with time using the
operator U ().

i @i=u@®j ()i (56)
We can get it from looking at Schroedinger equation.
Hj (t)l=lh@1 Mid>j ©Oi=en j (0)i (57)
thus, U(t) = e e
By making the change
t¥ ih (58)
we get
U@ T U( i hy=e " (59)

which gives us the startling result that .
whnic

TrlU( 1 h)]=Tr e



but then T' = cos (ztan +T). We can simplify this by using the fact that sec2 +tan? =1
wegetsec = 1 vZ=_L. Thus

0os °



