Kapitza Fall 2017

NOISY QUANTUM MEASUREMENT

Ben Saltzman

Q.I.T. TERM PAPER

Professor Sarada Rajeev December 10th 2017

1 Introduction

Not only does God play dice but... he sometimes throws them where they can't be seen.

Stephen Hawking

Despite Albert Einstein's insistence that the world is deterministic, quantum mechanics introduces a probabilistic world view. Measuring a quantum becomes a delicate task: measurements inherently a ect the system in question. In this paper, based on a lecture given to fellow Kapitza members on December 3rd, 2017, I discuss the formulation of measurement in a noisy quantum system.

2 A New Description of Measurement

Measurement is commonly described by de ning a set of projection operators that are complete, i.e.

> \mathbb{R}^2 j **j**@}\\$f(`\$@{\dis}}eti5l1a371(s [(ere[(qu-3whole[(quan)27(tuors)[(ar

and the state of the system after measurement is

$$
\frac{(I_S \quad jj \, \text{ihj}j_P)}{D} \left(\frac{U_{SP} \, j \quad i_S \quad j0 \, i_P)}{D} \right) \tag{3}
$$

Note that I_S is the measurement operator on the full system, since only the probe is measured.

Since U_{SP} is unitary, we have $U_{SP}^{\gamma}U_{SP} = I_{SP} = I_{S}$ I_{P} . Consider the case $k = 0$. For clarity, de ne M^j $M_S^{j,0}$ $\int_S^{J/U}$.

$$
U_{SP}^y U_{SP} \stackrel{k=p}{\sim} \begin{array}{ccc} \times & & \times \\ & M^{j^0 y} & j0 \, h j^0 j_P & \times \\ & & \end{array}
$$
\n
$$
= \begin{array}{ccc} \times & \times^{\prime^0} & & j \\ & j^0 M^{j^0 y} M^j & j0 \, h j^0 j j \, i \, R j_P \\ & & \end{array}
$$
\n
$$
= \begin{array}{ccc} \times & & \times \\ & M^{j^0 y} M^j & j0 \, h0 j_P \\ & & j \end{array} \tag{4}
$$

But $U_{SP}^{\gamma}U_{SP}$ $\stackrel{k=0}{\sim}$ I_S $\stackrel{j=0}{\sim}$ j0*ih*0 j_P . Using [\(4\)](#page-2-0), we conclude that

$$
I_S = \bigwedge_j^{\lambda} M^j M^j \tag{5}
$$

Using the de nition of U_{SP} , we can simplify [\(2\)](#page-1-0) and [\(3\)](#page-2-1). Substituting [\(1\)](#page-1-1) into [\(2\)](#page-1-0):

$$
x
$$

\n
$$
p_{J}(j) = h j_{S} h0j_{P} \t M_{S}^{j^{0};ky} jkihj^{0}j_{P} (I_{S} jjihj_{P})
$$

\n
$$
x
$$

\n
$$
M_{S}^{j^{0};k} jj^{0}ihkj_{P} j i_{S} j0i_{P}
$$

\n
$$
= h j_{S} M_{S}^{j^{0};ky} h0jkihj^{0}j_{P} (I_{S} jjihj_{P})
$$

\n
$$
= h j_{S} M_{S}^{j^{0};ky} jj^{0}ihkj0i_{P}
$$

\n
$$
M_{S}^{j^{0};k} j i_{S} jj^{0}j hkj0i_{P}
$$

\n
$$
= h j_{S} M^{jy} I_{S} hjj_{P} \t M^{j^{0}} j i_{S} jj^{0}i_{P}
$$

\n
$$
= h jM^{jy}M^{j} j
$$

and therefore

$$
p_J(j) = h \ jM^{j}M^{j}j \qquad (6)
$$

Similarly, we can simplify the post-measurement state to

$$
\frac{M^j \int_{\Theta} i_S \ j j \, i_P}{\overline{p_J(j)}}\tag{7}
$$

The state of S can be read o from (7) easily, since S and P are in a pure product state. Measurement can therefore be described as a set of measurement operators fM_s^j $^{\prime\prime}$ *sg*, instead of \digamma _jg, that satisfy [\(5\)](#page-2-2). See Appendix A for discussion on the application of this process to ensembles.

When transferring classical data over a quantum channel, the receiver doesn't need the post-measurement state to process the information in a quantum fashion. The relevant probability is the probability of error. For any such situation where the probability of an outcome matters and the postmeasurement state does not, we can describe a positive operator-valued measure (POVM) with a set of operators $f_{j}g = fM_{j}^{\gamma}M_{j}g$ that are non-negative and complete. Clearly, projection is a type of POVM. The probability of success of the POVM is \times

$$
\rho_X(x) \text{Tr} \left[\begin{array}{cc} x & x \end{array} \right]
$$

where \bar{x} is the density matrix for state γ $\bar{x}i$.

 \mathbf{v}

3 Composite Systems

Suppose we have two indepedent ensembles, " $_A = f p_X(x)$; j $_X i q$ and " $_B =$ $f p_Y(Y)$; j y ig. The density matrix for the joint state j x^j j y^j is

$$
E_{X,Y}[(j \ x^j \ j \ y^j)(h \ x^j \ h \ y^j)] = E_{X,Y}[j \ x^j h \ x^j \ j \ y^j h \ y^j]
$$

=
$$
p_X(x)p_Y(y)j \ x^{j} h \ x^j \ j \ y^{j} h \ y^j
$$

=
$$
p_X(x)j \ x^{j} h \ x^j \ y^{j} h \ y^j
$$

= (8)

where and are the density matrices for μ_A and μ_B respectively.

Now suppose we have a joint ensemble in which systems A and B are correlated classically. We'd like a formulation to express this ensemble similarly to the independent situation above. To do this, we introduce a new random variable Z that X and Y are conditioned on. The two ensembles are " $_A = f p_{X/Z}(x/z)$; j $_{X,Z}/g$ (density matrix z) and " $_B = f p_{Y/Z}(y/z)$; j $_{Y,Z}/g$ (density matrix \overline{z}), and X/Z and Y/Z are independent. Using the same procedure as we did with [\(8\)](#page-3-1), we obtain the density matrix of the total state:

$$
E_{X;Y;Z}[(j \ x_{;z}i \ j \ y_{;z}i)(h \ x_{;z}j \ h \ y_{;z}j)]
$$

= $p_Z(z)p_{X;Z}(x;z)p_{Y;Z}(y;z)j \ x_{;z}ih \ x_{;z}j \ j \ y_{;z}ih \ y_{;z}j$ (9)

De ne a new random variable $W = X \wedge Y \wedge Z$. We can write the density matrix in [\(9\)](#page-3-1) as \times

$$
\sum_{w} p_{W}(w) j_{w}ih_{w}j_{w}j_{w}ih_{w}j
$$
 (10)

So, we can write any state with the properties discussed in this paragraph as a product of pure states. This type of state is termed separable, and contains no entanglement. In other words, a separable state can always be prepared classically. See Appendix B for an application involving separable states.

4 Local Density Operators

w

Suppose systems A and B are in an entangled Bell state $j^{-+}i_{AB}$, Take a POVM j_j on A. The measurement operators for the system are $j_A^j - I_{B_j}$. The probability of outcome \dot{j} is

$$
p_{J}(j) = {}^{+} \n\stackrel{j}{A} I_{B} {}^{+} \n\stackrel{k}{AB}
$$

\n
$$
= \frac{1}{2} \n\stackrel{\n\chi}{k} / {}^{+} \n\stackrel{j}{\underset{k}{=} 0} I_{B}^{j} / I_{AB}^{j}
$$

\n
$$
= \frac{1}{2} \n\stackrel{\n\chi}{k} / {}^{+} \n\stackrel{j}{\underset{k}{=} 0} I_{A}^{j} / I_{A}^{j} h_{B}^{j} / I_{B}^{j} / I_{B}^{j}
$$

\n
$$
= \text{Tr} \n\stackrel{j}{A} \n\stackrel{\n\chi}{2} \n\stackrel{j}{\underset{k}{=} 0} \n\stackrel{k}{ik} h_{A}^{j} / A \n\tag{11}
$$

where the \local density operator" for A is the maximally mixed state $A =$ 1 $\frac{1}{2}$ \int_{0}^{1} \int_{0}^{1} \int_{0}^{1} interprocess goes similarly for B . Thus, the following global state gives the same predictions in local measurements as $j^{-+}i_{AB}$:

$$
A \qquad B
$$

We'd like to de ne what we mean by a local density operator in order to describe the results of local measurements. To do this, we need to de ne the partial trace operation.

Suppose $fjki_{A}g$ and $fjli_{B}g$ are orthonormal bases for the Hilbert spaces of A and B. Then $fjki_A - jli_Bg$ is an orthonormal basis for the product of the Hilbert spaces. For density operator $_{AB}$, the probability of outcome j is

$$
p_{J}(j) = \text{Tr} \begin{pmatrix} j & I_{B} \\ A & B \end{pmatrix} AB \n= [hkj_{A} h1j_{B}][(\begin{pmatrix} j & I_{B} \\ A & B \end{pmatrix} AB][jki_{A} j1j_{B}] \n= \begin{pmatrix} kI \\ hkj_{A} [I_{A} h1j_{B}][(\begin{pmatrix} j & I_{B} \\ A & B \end{pmatrix} AB][I_{A} j1j_{B}jiki_{A}) \n= \begin{pmatrix} kI \\ hkj_{A} A & (I_{A} h1j_{B}) AB(I_{A} j1i_{B}) jki_{A} \\ kI_{B} A & (I_{A} h1j_{B}) AB(I_{A} j1i_{B}) \end{pmatrix}
$$
\n(12)

So, we de ne the partial trace for B as

$$
\text{Tr}_B[X_{AB}] = \bigvee_{I} (I_A \quad \text{hIj}_B) X_{AB}(I_A \quad \text{jIi}_B) \tag{13}
$$

and the local density operator for A as

$$
A = \text{Tr}_B[A_B] \tag{14}
$$

Therefore, [\(12\)](#page-5-0) becomes

$$
p_J(j) = \text{Tr} \quad \bigg[A \quad A \qquad (15)
$$

Alice can predict the outcome of local measurements with [\(15\)](#page-5-1).

5 Classical-Quantum Ensembles

Suppose Alice prepares a quantum system with density matrix $\frac{x}{A}$ and probability distribution $p_X(x)$. She passes this ensemble to Bob, who must learn about it. There is a loss of information in X after preparation which is minimized if the state is pure. $A = \frac{1}{\lambda} \frac{1}{\beta} \frac{1}{X}$ and $X = \frac{1}{\lambda} \frac{1}{\beta} \frac{1}{X}$ is morthonormal basis $fjxi_{S2X}$. For a mixed state, $A = \frac{1}{X} p_X(X) \frac{X}{A}$ is more di cult to extract information from.

One solution is for Alice is to prepare a classical-quantum ensemble:

$$
fp_X(x)/ixihxj_X \qquad Ag_{x2X}
$$

This ensemble is so-called because system X is classical, while system A is quantum. The density operator for the entire system is

$$
x_A = \frac{X}{x} p_X(x) jx h x j_X \qquad \frac{x}{A} \tag{16}
$$

Suppose Bob makes a measurement of the system with $f(x)$ j $J_{\mathcal{A}}g$. This is akin to Bob measuring an isolated system A with $f \frac{f}{f}$ $J_{\mathcal{A}}^{\prime}$ g. Why?

Tr XA(I^X j A) = Tr (X x pX(x)jxihxj^X x ^A)(I^X j A) # = Tr "X x pX(x)(jxihxj^X IX x A j A) # = X x Tr[jxihxj^X IX] Tr pX(x) x A j A = X x Tr pX(x) x A j A = Tr ^A j A

So Bob can extract information about A from the whole system with a local measurement on A.

6 Conclusion

At the heart of quantum mechanics is a rule that sometimes governs politicians or CEOs - as long as no one is watching, anything goes.

Lawrence M. Krauss

Measurement of quantum systems is tricky, and matters only get more complicated when you consider composite quantum systems. With judicious choices of measurement operators and careful preparation of a system or composite system, one can make quantum measurement seem more akin to the classical case.

Appendix A: Rede ning Measurement for Ensembles

Suppose we have an ensemble

$$
f p_X(x) / j \, x / g_{x2X}
$$

with density operator \mathbf{v}

$$
= \sum_{x \geq x} p_X(x) j_x i h_x j
$$

Using the same procedure as outlined in section [2:](#page-1-2)

$$
\times p_J(j) = \frac{\times}{\underset{x2X}{\times}} p_X(x) \quad h \quad x_j \quad h0j_P \quad \times M_S^{j^0,ky} \quad jkihj^0j_P \quad (I_S \quad jj^hjj_P)
$$
\n
$$
\times M_S^{j^0,k} \quad jj^0ihkj_P \quad j \quad x_j \quad h0j_P
$$
\n
$$
= \frac{\times}{\underset{x2X}{\times}} \frac{\times}{\underset{y_0 \cdot k}{\times}} \times h \quad x_j \, M_S^{j^0,ky} \quad h0jkihj^0j_P \quad (I_S \quad jj^hjj_P)
$$
\n
$$
= \frac{\times}{\underset{x2X}{\times}} \frac{\times}{M_S^{j^0,k} j \quad x_j \, S} \quad jj^0i hkj0j_P
$$
\n
$$
= \frac{\times}{\underset{x2X}{\times}} \times \frac{\times}{\underset{y_0}{\times}} \times h \quad x_j \, M^{j^0}J_S \quad hjj_P \quad \times \frac{\times}{M^{j^0} j \quad x_j \, S} \quad jj^0j_P
$$
\n
$$
= \frac{\times}{\underset{x2X}{\times}} \times \frac{\times}{\underset{y_0}{\times}} \times h \quad x_j \, M^{j^0}M^{j^0}M^{j^0} \quad x_j \, S \quad \text{where}
$$
\n
$$
= \frac{\times}{\underset{x2X}{\times}} \times \frac{\times}{\underset{x_0 \cdot k}{\times}} \times h \quad x_j \, M^{j^0}M^{j^0}M^{j^0} \quad x_j \, S \quad \text{where}
$$
\n
$$
= \frac{\times}{\underset{x2X}{\times}} \times \frac{\times}{\underset{x_0 \cdot k}{\times}} \times h \quad x_j \, M^{j^0}M^{j^0} \quad x_j \, S \quad \text{where}
$$

This is a reformulation of the Born Rule. The post-measurement state is

$$
\mathcal{M}^j \quad \mathcal{M}^{j}{}^{y}
$$