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1 Introduction

Not only does God play dice but... he sometimes throws them
where they can’t be seen.

Stephen Hawking

Despite Albert Einstein’s insistence that the world is deterministic, quan-
tum mechanics introduces a probabilistic world view. Measuring a quantum
becomes a delicate task: measurements inherently a�ect the system in ques-
tion. In this paper, based on a lecture given to fellow Kapitza members on
December 3rd, 2017, I discuss the formulation of measurement in a noisy
quantum system.

2 A New Description of Measurement

Measurement is commonly described by de�ning a set of projection op-
erators that are complete, i.e. X

j



and the state of the system after measurement is
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 j0iP )p
pJ(j)

(3)

Note that IS 
 jjihjjP is the measurement operator on the full system, since
only the probe is measured.

Since USP is unitary, we have U ySPUSP = ISP = IS 
 IP . Consider the
case k = 0. For clarity, de�ne M j �M j;0

S .
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But U ySPUSP
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 j0ih0jP . Using (4), we conclude that
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Using the de�nition of USP , we can simplify (2) and (3). Substituting (1)
into (2):X
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and therefore
pJ(j) = h	jM jyM jj	i (6)

Similarly, we can simplify the post-measurement state to

M j j	iS 
 jjiPp
pJ(j)

(7)

The state of S can be read o� from (7) easily, since S and P are in a pure
product state. Measurement can therefore be described as a set of measure-
ment operators fM j

Sg, instead of f�jg, that satisfy (5). See Appendix A for
discussion on the application of this process to ensembles.

When transferring classical data over a quantum channel, the receiver
doesn’t need the post-measurement state to process the information in a
quantum fashion. The relevant probability is the probability of error. For
any such situation where the probability of an outcome matters and the post-
measurement state does not, we can describe a positive operator-valued mea-
sure (POVM) with a set of operators f�jg = fM y

jMjg that are non-negative
and complete. Clearly, projection is a type of POVM. The probability of
success of the POVM is X

x2X

pX(x) Tr [�x�x]

where �x is the density matrix for state j xi.

3 Composite Systems

Suppose we have two indepedent ensembles, "A = fpX(x); j xig and "B =
fpY (Y ); j�yig. The density matrix for the joint state j xi 
 j�yi is

EX;Y [(j Xi 
 j�Y i)(h X j 
 h�Y j)] = EX;Y [j Xih X j 
 j�Y ih�Y j]

=
X
x;y

pX(x)pY (y) j xih xj 
 j�yih�yj

=
X
x

pX(x) j xih xj 

X
y

j�yih�yj

= �
 � (8)

where � and � are the density matrices for "A and "B respectively.
Now suppose we have a joint ensemble in which systems A and B are

correlated classically. We’d like a formulation to express this ensemble sim-
ilarly to the independent situation above. To do this, we introduce a new
random variable Z that X and Y are conditioned on. The two ensembles
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are "A = fpXjZ(xjz); j x;zig (density matrix �z) and "B = fpY jZ(yjz); j�y;zig
(density matrix �z), and XjZ and Y jZ are independent. Using the same
procedure as we did with (8), we obtain the density matrix of the total state:

(9)
EX;Y;Z [(j X;Zi 
 j�Y;Zi)(h X;Z j 
 h�Y;Z j)]

=
X
x;y;z

pZ(z)pXjZ(xjz)pY jZ(yjz) j x;zih x;zj 
 j�y;zih�y;zj

De�ne a new random variable W = X ^ Y ^ Z. We can write the density
matrix in (9) as X

w

pW (w) j�wih�wj 
 j�wih�wj (10)

So, we can write any state with the properties discussed in this paragraph as
a product of pure states. This type of state is termed separable, and contains
no entanglement. In other words, a separable state can always be prepared
classically. See Appendix B for an application involving separable states.

4 Local Density Operators

Suppose systems A and B are in an entangled Bell state j�+iAB. Take a
POVM �j

j on A. The measurement operators for the system are �j
A 
 IBj.

The probability of outcome j is
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where the \local density operator" for A is the maximally mixed state �A =
1
2

P1
k=0 jkihkjA. This process goes similarly for B. Thus, the following global

state gives the same predictions in local measurements as j�+iAB:

�A 
 �B
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We’d like to de�ne what we mean by a local density operator in order to
describe the results of local measurements. To do this, we need to de�ne the
partial trace operation.

Suppose fjkiAg and fjliBg are orthonormal bases for the Hilbert spaces
of A and B. Then fjkiA 
 jliBg is an orthonormal basis for the product of
the Hilbert spaces. For density operator �AB, the probability of outcome j is
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So, we de�ne the partial trace for B as

TrB[XAB] =
X
l

�
(IA 
 hljB)XAB(IA 
 jliB)

�
(13)

and the local density operator for A as

�A = TrB[�AB] (14)

Therefore, (12) becomes

pJ(j) = Tr
�
�j
A�A

�
(15)

Alice can predict the outcome of local measurements with (15).

5 Classical-Quantum Ensembles

Suppose Alice prepares a quantum system with density matrix �xA and
probability distribution pX(x). She passes this ensemble to Bob, who must
learn about it. There is a loss of information in X after preparation which
is minimized if the state is pure. �A =

P
x px(x) jxihxjA for an orthonormal

basis fjxigx2X . For a mixed state, �A =
P

x pX(x)�xA is more di�cult to
extract information from.
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One solution is for Alice is to prepare a classical-quantum ensemble:

fpX(x); jxihxjX 
 �
x
Agx2X

This ensemble is so-called because system X is classical, while system A is
quantum. The density operator for the entire system is

�XA =
X
x

pX(x) jxihxjX 
 �
x
A (16)

Suppose Bob makes a measurement of the system with fIX 
 �j
Ag. This

is akin to Bob measuring an isolated system A with f�j
Ag. Why?
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�
So Bob can extract information about A from the whole system with a local
measurement on A.

6 Conclusion

At the heart of quantum mechanics is a rule that sometimes gov-
erns politicians or CEOs - as long as no one is watching, anything
goes.

Lawrence M. Krauss

Measurement of quantum systems is tricky, and matters only get more
complicated when you consider composite quantum systems. With judicious
choices of measurement operators and careful preparation of a system or
composite system, one can make quantum measurement seem more akin to
the classical case.
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Appendix A: Rede�ning Measurement for En-

sembles

Suppose we have an ensemble

fpX(x); j xigx2X

with density operator

� =
X
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pX(x) j xih xj

Using the same procedure as outlined in section 2:X
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�
This is a reformulation of the Born Rule. The post-measurement state is

M j�M jy
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