SIZE OF PROJECTION OF VECTOR SPACE OVER Z_p^d

ZHONGHUI SUN

Abstract. The goal of the paper is to find the size of projection of vector space over Z_p^d by using the similar proof of Marstrand's projection theorem for one-dimensional projections.

1. Introduction

We discuss a special case of Marstrand's projection theorem in this paper. Let e be a unit vector in \mathbb{R}^n and \mathbb{E} \mathbb{R}^n a compact set. The projection $P_e(E)$ is the set $\{x \cdot e : x \in E\}$

SIZE OF PROJECTION OF VECTOR SPACE OVER \mathbf{Z}_p^d

Z. SUN

Proof. Suppose $v(t) f(t) = f(x \cdot v)$

Consider $\frac{y}{t} = \frac{y}{t^2}$. To make this equal to r, we must find t such that $\frac{y}{r} = t^2$. Since y and r is not in , $\frac{y}{r}$. Therefore $V = S_1 - S_r$.

Remark 4.1. We have the fact that $\int_{y Z_p^2} |\hat{E}(y)|^2 = p^{-2}/E/$ Theorem 4.5. $|P_v(E)| = p \cdot \frac{1}{1 + \frac{p^2}{(p+1)/E/2} - \frac{1}{p+1}}$, if |E|