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Abstract

This paper addresses fully augmented links (FALs) and nested links, two
subclasses of generalized FALs. We utilize a graph called the crushtacean,



A second question that Magnum and Stanford ask is \Can we characterize those
links that are determined by their complements?" In Section 3.2, we prove that





Figure 3: The cell decomposition process for a nested link comple-
ment.

where every vertex has degree three. A graph is maximal planar if it is simple and
planar, but adding any edge would destroy one of these properties.

A triangulation of S2 is a simple planar graph with at least two faces such that
each face has three edges and no distinct faces share more than one edge. Purcell
proves in [10] that the crushtacean is the dual graph to a triangulation of S2. We
now investigate combinatorial properties of spherical triangulations, which combine
with duality to reveal similar structure in crushtaceans.

Lemma 1.3.1. Let � be a triangulation of S2. Then, � has at least 4 vertices and
is maximal planar.

Proof. Let � be a triangulation of S2. Since � is simple, if � had fewer than three
vertices, then � must have fewer than two faces. Thus, � must have at least three
vertices. Now, suppose � has exactly three vertices. Then, since it is simple, planar,
and must have more than one face, � must form a triangle, splitting S2 into exactly
two faces. These two faces must share more than one edge. This is a contradiction,
so � must have more than three vertices. This proves the �rst half of our statement.
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Figure 4: Constructing a crushtacean.

To add any edge to � while maintaining planarity, we must add an edge through
a face. Since each face of � is a triangle, however, if vertices u and v share a face,
then u and v must also be adjacent. Thus, we cannot add any edges to � while
maintaining both planarity and that � is simple, so � must be maximal planar.

A graph G is k-vertex-connected if G has more than k vertices and remains
connected when any collection of fewer than k vertices are removed. It is a common
fact, stated in [3], that maximal planar graphs with at least four vertices are 3-
vertex-connected. We have then shown that any triangulation of S2 is 3-vertex
connected. A 3-vertex connected, simple, planar graph is also known as a polyhedral
graph.

Proposition 1.3.2. The crushtacean of a hyperbolic nested link is 3-vertex-connected,
simple, planar, trivalent graph.

Proof. Let � be the crushtacean of a hyperbolic nested link. Since the upper half
of each twice punctured disk in the cell decomposition has three edges, we know
each shaded region of the decomposition will be a triangle. Then, since we connect
vertices of � through the corners of these shaded regions, each vertex must be degree
three.

In [10], Purcell proves that the crushtacean must be the dual graph of a tri-
angulation of S2, which we have shown must be a polyhedral graph. The dual to



A balanced tree is a tree that admits an involution that �xes one edge, e�. This
involution induces a coloring such that edges mapped to one another have the same
color. We’ll refer to the edge e� as the edge of symmetry. Now, given a graph G,
a balanced spanning forest on G is a collection of disjoint balanced trees in G such
that every vertex of G lies in some tree in this forest.

From the cell decomposition of the complement of a nested link, we can �nd a
unique balanced spanning forest on the crushtacean. This will be constructed in
such a way so that vertices mapped to each other by the involution correspond to



that a pair of vertices in a crushtacean are glued if they are mapped to one another
by the involution on a balanced tree, in connection to the corresponding faces in
the cell decomposition being glued. The gluing pattern refers to the collection of
information about which vertices are glued. Finally, a pair of vertices will be said
to be glued by a tree or forest if they are glued in the induced gluing pattern.

2 Nested Links with the Complement of an FAL

This section focuses on describing a su�cient condition for the complement of a
nested link to be homeomorphic to that of a fully augmented link. Subsection 2.1
provides a brief introduction to Dehn twists in the context of link complements.
Subsection 2.2 describes conditions for the gluing pattern on a nested link painted
crushtacean to be the same as that for an FAL painted crushtacean. In cases where
the gluing pattern is the same, a homeomorphism between the complements of
these nested links and FALs is then described. Subsection 2.3 introduces a family
of crushtaceans called generalized ladder graphs that have the properties described
in Subsection 2.2. A complete description of this family is given.

2.1 Dehn Twists



in Whitehead’s construction is to slice along such a disk D, rotate one full time,
and then re-glue the disk, as is shown in Figure 7. This process of slicing along
a disk bounded by an unknotted component, rotating one full time, and regluing
is called an Dehn twist. Intuitively, one can think of this process as adding one
full twist between the strands that pass through C and puncture D. As they have
been described, a Dehn twist is a homeomorphism between link complements, as is
discussed in [11].

Figure 7: The steps of a Dehn twist.

2.2 Ladder Subgraphs of Crushtaceans

Given a link L, its complement S3nL is a 3-manifold. If a link L� is isotopic to L,
then S3nL is homeomorphic to S3nL�, but the converse is not necessarily true.
Our goal is to address when nested links and fully augmented links have homeo-
morphic complements. The following Theorem concerning simple planar trivalent
graphs will be useful in considering the question.

Theorem 2.2.1. Given a simple trivalent graph with a balanced spanning forest,
there exists a perfect matching that induces the same gluing pattern if and only if all
vertices are glued to an adjacent vertex in the gluing pattern induced by the forest.

Proof. If the vertices glued by the balanced spanning forest are not adjacent, then
no perfect matching can induce the same gluing pattern, as all vertices glued by a
perfect matching are adjacent.
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Now, to address the converse, we suppose that all pairs of glued vertices are
adjacent. We’ll show that the collection of these edges of adjacency between glued
vertices give a perfect matching on the graph. First, notice that none of these
edges of adjacency can share a vertex, as every vertex is glued to exactly one other.
Second, since every vertex is glued to another, this collection of disjoint edges span
the vertices of the graph, hence is a perfect matching.

Now, we want to introduce a certain type of graph called a ladder graph, denoted
Ln, with 2n vertices and 3n � 2 edges. We depict L5 and the general structure of
Ln



The edge of symmetry that is also in the perfect matching is colored red in
Figure 9. In this diagram, we have colored one adjacent edge blue to represent the
continuing tree. This tree must be balanced, so we must also color either e1 or e2

blue. We’ll look at these as two separate cases.

Figure 9: An edge of symmetry with one adjacent edge colored.

Case 1: Assume we color e1 blue. This tree must then glue the vertices v2 and
v4, but then our hypothesis and Theorem 2.2.1 tell us that there must be an edge
between v2 and v4, as depicted in the �rst diagram of Figure 10. Now, we have two
subcases: either v1 6= v4 or v1 = v4 (where equality here means that they are the
same point).

If v1 6= v4, then there must be some subgraph T that v1 is connected to, as shown
in the second image of Figure 10. Then since our graph must be 3-vertex connected,
by Proposition 1.3.2, there must be an edge connecting T to each of v2 and v4, else
there would be two vertices that we could remove and disconnect T from the rest of



some subgraph G that would be disconnected from the crushtacean by removing v2

and v5, as in the second diagram of Figure 11, which would again contradict that
the crushtacean is 3-vertex-connected. Thus, in this case, our crushtacean must be
K4.

Figure 11: Addressing the case where e1 is colored and v1 = v4.



Figure 13: A large ladder.

some examples for a ladder with two rungs. Note that in general, a ladder with n
rungs with the canonical perfect matching will correspond to a chain with n crossing
circles. Figure 15 depicts this, along with the same ladder and an arbitrary balanced
tree that gives the same gluing pattern.

Figure 14: Top: A two rung ladder with the canonical perfect
matching and the associated tangle. Bottom: A two rung ladder
with a single balanced tree that gives the same gluing pattern as
above and the associated tangle.

Theorem 2.2.3. If a fully augmented link F and a nested link N have the same
crushtacean, other than K4, with the same gluing pattern, then there is a homeo-
morphism h : S3nF ! S3nN given by a sequence of Dehn twists.

Proof. By Proposition 2.2.2, the balanced forest associated with N must only dif-
fer from the perfect matching associated with F



Figure 15: Top: An n rung ladder with the canonical perfect match-
ing and the associated tangle. Bottom: An n rung ladder with a
single balanced tree that gives the same gluing pattern as above
and the associated tangle.

with F on a single ladder. The more general case will be a composition of such
homeomorphisms.

First, notice that we can also describe h as a composition of homeomorphisms
hi between the complements of nested links corresponding to iteratively removing
one perfect matching edge from the forest and extending the balanced tree on this
ladder by two rail edges that will then glue the same vertices as the removed edge.

Now, note that each homeomorphism hi will be isotopic to the identity every-
where except the region local to the tangle associated with this ladder, since the
links F and N must be identical on all other regions. We’ll now proceed inductively,
to show that each hi is given by a sequence of Dehn twists.

The base case will be replacing two rungs of a ladder with a balanced tree that
gives the same gluing pattern, as is depicted in Figure 14. By symmetry, examining
this case will also su�ce to address the case where the edge of symmetry is on the
right of the colored rails. We will now use Figure 16 to depict the sequence of Dehn
twists that will give the homeomorphism h1. The �rst image in this �gure gives
a sublink of F as follows: for our current purposes, the green torus represents the



Figure 16: The Dehn twists described in the proof of Theorem
2.2.3.

and we perform an isotopy in the fourth image to emphasize that these components
are indeed unlinked. Finally, in the �fth image, we do a single Dehn twist about the
red component, which unlinks the black and the blue components. One can then
con�rm with Figure 14 that the result of these Dehn twists matches the expected
tangle.

Now, assume hi is given by a sequence of Dehn twists for 1 � i � n. We’ll show
that hn+1 is also given by Dehn twists. We’ll again assume that the tree is being
extended on the right side, and the other case will be given by symmetry. We will
again reference Figure 16 (however the green torus will be interpreted di�erently in
this step). The sublink we’ll look at this time is given in Figure 17. It will su�ce to
look at this sublink because we have included all components that link with circles
u and v, which will be the only components that we perform Dehn twists about.
In this case, we’ll take the meridian of the green torus to be the knot circle labeled

14



c that lies in the plane. The torus will then encompass the crossing circles that
appear green, blue, and red in Figure 17, in addition to those that lie in the ellipsis.
The red and blue components in Figure 16 will correspond to those labeled u and v
in Figure 17, respectively.

We will again start by performing one Dehn twist about the red component.
Now, however, the components contained in the green torus will become twisted



be called feet (with the singular foot). An example of such a structure is depicted
in Figure 18, where the feet are colored blue.



removed disconnects the graph. Similarly, we’ll de�ne a bridge edge of an arbitrary
graph as an edge that if removed disconnects the graph.

Lemma 2.3.1. A generalized ladder graphs with at least two ladders is 3-vertex
connected if and only if no foot edge connects vertices that lie in the same ladder
and there is no bridge ladder.

Proof. First, suppose there is a foot of a generalized ladder graph that connects two
vertices of the same ladder. We require that generalized ladder graphs be simple,
so this foot must not connect two verties that are already adjacent in the ladder
itself. This must then happen as depicted in Figure 20. We notice, however, that
since there is more than one ladder in our graph, the region labeled T is nontrivial.
Thus, if we remove the two vertices circled in red, then our graph will become
disconnected, so our graph is not 3-vertex-connected. Similarly, if there is a bridge

Figure 20: Subgraph of a generalized ladder graph where a foot
connects two vertices in the same ladder.

ladder, then removing a pair of vertices that are endpoints of the same rung will
clearly disconnect the graph.

Now, to address the converse, suppose every foot connects vertices in two distinct
ladders and there is no bridge ladder. We’ll show that in this case no pair of two
vertices may be removed that disconnects our graph.



Proposition 2.3.2. There is a bijection between the set of 3-vertex-connected gen-
eralized ladder graphs with more than one ladder and the set of perfect matchings
on simple planar trivalent graphs without a bridge edge.

Proof. Consider one colored edge, e, in a perfect matching on a simple planar triva-
lent graph without a bridge edge, G. Let v� and v0 be the endpoints of e. Let v1

and v2 be the other vertices adjacent to v� and let v3 and v4 be the other vertices
adjacent to v0. Now, we remove e; v�, and v0 from our graph. Then, we add in a
ladder with an arbitrary number of rungs such that there is a foot connecting each
of v1, v2, v3, and v4 to one of the degree 2 vertices in our ladder so that v1 and v2

are adjacent and v3 and v4 are adjacent. This should be done so that these new



Figure 21: The correspondence between a generalized ladder graph
and a simple planar trivalent graph with a perfect matching (in
red).

simple planar trivalent graphs is distinct from how we have used them before. This
application describes a method to characterize generalized ladder graphs, while the
former application describes the balanced spanning forest associated with an FAL.

3 Prism Graphs and Pretzel Links

This section focuses on applications to a family of FALs called fully augmented
pretzel links. Subsection 3.1 describes a family of nested links with complements
homeomorphic to the fully augmented pretzel links. The size of this family is shown
to grow exponentially with the number of link components. In Subsection 3.2, we
show that the fully augmented pretzel links are determined by their complements,
within the class of fully augmented links.

3.1 Nested Links with the Complement of S3nPn

In this section, we’ll look at the prism graphs, Pn with 2n vertices. These are of
interest because they are the only 3-vertex-connected generalized ladder graphs with
one ladder. The fully augmented link associated with Pn and the canonical perfect
matching is what is sometimes referred to as the fully augmented pretzel link with
n crossing circles, which we’ll denote Pn. Some properties of the fully augmented
pretzel links are explored by Meyer, Millichap and Trapp in [8]. The prism graph
Pn and the fully augmented pretzel link Pn are shown in Figure 22.

We would like to consider nested links with the same complement as Pn. We
will need to be able to determine when two balanced spanning forests on Pn that
give the same gluing pattern as the canonical perfect matching are associated with
two di�erent links. We’ll introduce some tools that will help us do this.

If c1 and c2 denote two components in a given link, let lk(c1; c2) denote the
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Figure 23: Example P6 Coloring

Lemma 3.1.1. Consider the link formed from a balanced spanning forest on Pn
that gives the canonical gluing pattern. Suppose that on some connected sub-ladder
two consecutive trees in the forest are composed of three edges. Then, the primary
crossing circles associated with these trees each have a component linking number of
three. Further, if in clockwise order we have

i. a 0 tree followed by a 0 tree or a 1 tree followed by a 1 tree, then the associated
primary knot



Figure 24: The four options for two consecutive trees with three
edges.
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Theorem 3.1.2. For even n, there are at least 2n=2=n distinct nested links whose
complement is homeomorphic to that of Pn.

Proof. Let Pn have a balanced spanning forest such that each tree has three edges
and the gluing pattern is the same as that given by the canonical perfect matching
in Pn. Then, it follows from Theorem 2.2.3 that the complement of the nested link
associated with Pn has the same complement as Pn.

By Lemma 3.1.1, the primary crossing circles must have a component linking
number of 3 and link with exactly two primary knot circles. Further, if any other
components have a component linking number of 3, each must be a primary knot
circle. Note that primary knot circles link with exactly two distinct primary crossing
circles and that the sublink composed of primary crossing circles and primary knot
circles forms a chain. Since component linking number is equal to the degree of the
associated vertex in the linking graph, we have shown that there is a unique cycle in
the linking graph where (at least) every other vertex has degree 3, given by vertices
associated with primary crossing circles and primary knot circles, alternating. We’ll
look at the degree sequence along this cycle, which has length n.

If every vertex along this cycle has degree 3, then the crushtacean must be
covered by all 0 trees or all 1 trees. Now, assume that not every vertex in this
cycle has degree 3. Then, the vertices associated with primary crossing circles can
be determined, since these all have degree 3 and alternate with the primary knot
circles. Let’s consider the subsequence given by the degrees of the primary knot
circles. This subsequence will have length n=2, since every other vertex along the
originally identi�ed cycle is associated to a primary knot circle. We can traverse
this subsequence in two directions. In each direction, we can associate an n=2 length
cycle of binary digits, since the degree sequence of these vertices tells us when we
change between 0 trees and 1 trees. Further, every binary cycle has an associated
degree sequence of this form. There are 2n=2 binary strings of length n=2 and at
most n=2 can correspond to the same cycle, so there are at least 2n=2=(n=2) distinct
binary cycles. In general, traversing the degree sequence in di�erent directions will
yield distinct binary cycles, so since there were two ways to traverse our degree
sequence, we can say that there are at least 2n=2=n binary cycles associated with
distinct degree sequences.

Note that this lower bound is not sharp. This argument can easily be extended
by considering forests containing trees of depth other than two. Arguments can be
made related to integer partitions of n. In this way, we can also consider odd n.
The above argument is made to show that this value is at least exponential in n=2.

Theorem 2.2.3 tells us that all of these nested links are related by some se-
quence of Dehn twists. By the work of Whitehead, we know that, in general, we
can use Dehn twists to generate in�nitely many distinct links with homeomorphic
complements [14]. Note, however, that we cannot continue to perform Dehn twists
inde�nitely and still be left with a nested link; this follows from the fact that there
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Figure 25: Two edges corresponding to one knot circle.

are only �nitely many nested links with the same number of components.

3.2 Fully Augmented Pretzel Links

We end this section by taking a closer look at the fully augmented pretzel links.

Lemma 3.2.1. The fully augmented pretzel links Pn (n � 3) are the only 
at
hyperbolic FALs with the same number of crossing circles and knot circles.

Proof. First, note that there are no hyperbolic FALs with only one crossing disk.
Now, consider a hyperbolic FAL with two crossing disks. The crushtacean for this
link must have four vertices and must thus be K4. Up to a rotation or re
ection,
there is only one perfect matching on K4. This painting gives the Borromean rings



Note that this proof also tells us that Pn with the canonical perfect matching is
the unique crushtacean for Pn.

Before proceeding to the statement and proof of the next theorem, we want to
recall that Mostow’s rigidity theorem tells us that geometric properties of �nite-
volume hyperbolic 3-manifolds are in fact topological invariants. In particular, the
number of cusps and the volume of a hyperbolic link complement are topological
invariants.

Theorem 3.2.2. Within the class of hyperbolic 
at FALs, the fully augmented pret-
zel links Pn are uniquely determined by their complements.

Proof. First, note that for each component in a hyperbolic link, there is an associated
cusp in the complement. The number of cusps of a hyperbolic 3-manifold is a
topological invariant, so if two hyperbolic links have homeomorphic complements,
they must have the same number of components.

Suppose we have a hyperbolic 
at FAL F whose complement is homeomorphic
to that of Pn. Note that Pn has 2n components, so we have shown F must have 2n
components. We know that the number of crossing circles for any fully augmented
link must be greater than or equal to the number of knot circles, so if F is distinct
from Pn, then F must have at least n + 1 crossing circles, by Lemma 3.2.1. Our
goal is to show that this cannot be the case, given that S3nF is homeomorphic to
S3nPn.

In [10], Purcell states that if F has c crossing circles, then the hyperbolic volume
of F is at least 2v8(c � 1) where v8 = 3:66386::: is the volume of a regular ideal
tetrahedron. We note that this lower bound is increasing with the number of crossing
circles, so the lower bound for more than n



An earlier version of this paper utilized a \fact" that if two balanced spanning
forests on a crushtacean gave the same gluing pattern, then the nested links associ-
ated with these balanced spanning forests must have homeomorphic complements.
The reasoning follows from the correspondence between glued vertices and glued
faces in the cell decomposition. Theorem 2.2.3 proves this for some cases, but a
rigorous proof of the more general statement should be given elsewhere.

Finally, it has been conjectured that all FALs are uniquely determined by their
complements within the class of fully augmented links. Theorem 3.2.2 proves this
for the subclass of fully augmented pretzel links, but it does not seem likely that
this particular method will generalize.

Acknowledgements

I’d like to thank Dr. Fred Cohen for advising this project as a senior thesis. I’d also
like to thank Dr. Rollie Trapp for initially advising this work as an REU. Finally,
I would like to thank California State University, San Bernardino and NSF grant
DMS-1758020 for partially funding this work.

References

[1] Eric Chesebro, Jason DeBlois, and Henry Wilton. \Some virtually special hy-
perbolic 3-manifold groups". In: Comment. Math. Helv. 87.3 (2012), pp. 727{
787. issn: 0010-2571. doi: 10.4171/CMH/267.

[2] Maria Chudnovsky and Paul Seymour. \Perfect matchings in planar cubic
graphs". In: Combinatorica 32.4 (2012), pp. 403{424. issn: 0209-9683. doi:
10.1007/s00493-012-2660-9.

[3] Tomotaka Fukuda, Seiya Negami, and Thomas W. Tucker. \3-connected pla-
nar graphs are 2-distinguishable with few exceptions". In: Yokohama Math. J.
54.2 (2008), pp. 143{153. issn: 0044-0523.

[4] C. McA. Gordon and J. Luecke. \Knots are determined by their complements".
In: J. Amer. Math. Soc. 2.2 (1989), pp. 371{415. issn: 0894-0347. doi: 10.

2307/1990979.

[5] John Harnois, Hayley Olson, and Rolland Trapp. \Hyperbolic tangle surgeries
and nested links". In: Algebr. Geo347.eem.4240(Sa51(o3l)]TJ/F8 10.9091 Tf 104.589 0 Td [(d8.03-328(l05011(e012),)-338(lp.)-337(I157{15602)]TJ/F65 10.9091 Tf 124.32920 Td [(issn)]TJ/F8 10.9091 Tf 19.976 0 Td [(:)-TJ -355.091 -13.549 Td [(104722797.)]TJ/F65 10.9091 Tf 63.)99 - Td [(doi)]TJ/F8 10.9091 Tf 17.043 0 Td [(:)]TJ/F66 10.9091 Tf 7.66760 Td [(10)21540/agt.012.2.257{]TJ/F8 10.9091 Tf 173.47530 Td [(.)]TJ
0 g 0 G
 -923.4525-18.033 Td [([26)]TJ
0 g 0 G
 [-1000(Mari)-2797(La)28(k)28(e.-1(n)28(t)28(y)-8(.)]2797(134Hhe)-4797()28(eolum)-4797(f)-4797(h27(y)81p)-28(erb)-27(olic)-279(allern,atng)-297(links-297(lomplemen)28(ts".)]2978In:)]TJ/F63 10.9091 Tf 27.424 -13.549 Td [(aPr51(o351(c.)]3416(L51(o3non)-2416(ath.)-3417So)512c.)]341((13051,]TJ/F8 10.9091 Tf 1441033 0 Td [(87.2-3371(20084051,.-3371Wth)-3620an)-3671pp)-38(en)dix-3671)28(y)-3371In)-3670(Agol-3671pnd]TJ -1641033 013.549 Td [(aDyan)1229.42)28(udrstn,)-2723lp.)-329.4204{24.)]TJ/F65 10.9091 Tf 1241077 0 Td [(issn)]TJ/F8 10.9091 Tf 19.975 0 Td [(:)-3723l0024-615.doi:



[7] Brian Mangum and Theodore Stanford. \Brunnian links are determined by
their complements". In: Algebr. Geom. Topol. 1 (2001), pp. 143{152. issn:
1472-2747. doi: 10.2140/agt.2001.1.143.

[8] Je�rey Meyer, Christian Millichap, and Rolland Trapp. \Arithmeticity and
Hidden Symmetries of Fully Augmented Pretzel Link Complements". In: arXiv:
Geometric Topology (Nov. 2018).

[9] Hayley Olsen. Nested and Fully Augmented Links. CSUSB Mathematics REU,
2016.

[10] Jessica S. Purcell. \An introduction to fully augmented links". In: Interactions
between hyperbolic geometry, quantum topology and number theory. Vol. 541.
Contemp. Math. Amer. Math. Soc., Providence, RI, 2011, pp. 205{220. doi:
10.1090/conm/541/10685.

[11] Jessica S. Purcell. Hyperbolic Knot Theory. 2020. arXiv: 2002.12652 [math.GT].

[12] Saul Stahl and Catherine Stenson. Introduction to topology and geometry. Sec-
ond. Pure and Applied Mathematics (Hoboken). John Wiley & Sons, Inc.,
Hoboken, NJ, 2013, pp. xvi+512.

[13] William Thurston. The Geometry and Topology of 3-Manifolds. Lecture Notes.
1978.

[14] J. H. C. Whitehead. \On Doubled Knots". In: Journal of the London Mathe-
matical Society s1-12.1 (1937), pp. 63{71. doi: 10.1112/jlms/s1-12.45.63.

[15] Hassler Whitney. \Congruent Graphs and the Connectivity of Graphs". In:
Amer. J. Math. 54.1 (1932), pp. 150{168. issn: 0002-9327. doi: 10.2307/

2371086.

27


	Introduction
	Fully Augmented and Nested Links
	Cell Decomposition
	Crushtaceans
	Balanced Spanning Forests

	Nested Links with the Complement of an FAL
	Dehn Twists
	Ladder Subgraphs of Crushtaceans
	Generalized Ladder Graphs

	Prism Graphs and Pretzel Links
	Nested Links with the Complement of S3Pn
	Fully Augmented Pretzel Links

	Directions for Further Work

