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Abstract

Consider a d-ary tree T which simulates the process of broadcasting
information from the root to other vertices, where each edge is a copy of
an irreducible and aperiodic Markov chain M with reversible transition
matrix M 2 R n � n on state space 
, the goal is to reconstruct the value of
the root given values of nodes at level n of the tree, where n ! 1 . This
branching process is useful for modeling complex populations that exhibit
dependencies between the states of individuals and their ancestors. It
can be used to study a wide range of phenomena, including the spread
of diseases in populations, the growth of organisms in ecosystems, and
the di�usion of information and ideas. We are going to work on the
non-reconstruction conjecture of this problem. The conjecture states that
information on root cannot be reconstructed if j� 2(M )j < 1

d , where � 2(M )
is the second largest eigenvalue ofM . Our focus is on the scenario where
M is symmetric.

1 Introduction

The study of information propagation has gained signi�cant attention in recent
years due to its wide-ranging applications in diverse domains such as epidemi-
ology, ecology, and social network analysis. The ability to model the behavior
of these systems, as well as the limitations of information recovery, can provide
valuable insights into the underlying mechanisms driving their dynamics.

In this paper, we investigate a speci�c instance of information broadcasting in a
d-ary tree, wherein the edges represent irreducible and aperiodic Markov chains
with a symmetric transition matrix. The d-ary tree T serves as a natural model
for representing the process of broadcasting information from a root node to
the remaining vertices. Each edge in this tree is a copy of an irreducible and
aperiodic Markov chain M with a reversible transition matrix M 2 R n � n on
the state space 
. Our objective is to reconstruct the value of the root node
based on the values of nodes at leveln of the tree, asn ! 1 . This branching
process is particularly relevant in the context of modeling complex populations
that exhibit dependencies between the states of individuals and their ancestors.
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We dedicate our e�orts to understanding the non-reconstruction conjecture as-



optimization problems. It can also be linked to the reconstruction problem
for the Potts model [5], a generalization of the Ising model used in statistical
mechanics to describe the behavior of interacting particles in a lattice. In this
setting, the d-ary tree with symmetric Markov chain edges can be viewed as a
lattice structure, where each node represents a particle with one of the possible
discrete states.

2.2 Existing reconstruction methods

Various reconstruction methods have been developed to address the problem of
inferring the root state in a d-ary tree. One such method to usemaximum like-
lihood estimation (MLE) , which is consistent for inferring the tree topology
[6]. In particular, we �nd the optimal assignment of states to the root node that
maximizes the likelihood of the observed data. Another approach is thecensus
method, which involves observing whether the census of the con�guration at
level n contains any signi�cant information on the root variable. Reconstruc-
tion (and census) solvability whend� 2(M ) > 1 was initially demonstrated in [7],
though it was expressed in the context of multi-type branching processes which
we will later introduce in §3.3. The proofs of the non-reconstruction result when
d� 2(M ) � 1 are harder as shown in [8], where it's also demonstrated that the
asymptotic independence of the root in the census is determined by the spectral
properties of M .

3 Preliminaries

3.1 Markov chains

In this section, we introduce the basic concepts and notations related to Markov
chains, which will be employed throughout the paper to analyze the non-reconstruction
conjecture in information broadcast over d-ary trees.

A Markov chain is a stochastic process that models the transition between states
in a system, where the future state depends only on the current state and not
on the past states. This property is known as the Markov property.

De�nition 1. (Markov Chain) A Markov chain is a sequence of random
variables X n ; n 2 N taking values in a �nite or countable state space
 and
satisfying the Markov property: for any n 2 N and any statesx0; x1; : : : ; xn +1 2quenc



De�nition 2. (Transition Matrix) Let M be a Markov chain with state space

 . The transition matrix M 2 R j 
 j�j 
 j of M is a matrix such that M ij is
the probability of transitioning from state i to state j :

M ij = P(X n +1 = j jX n = i ); i; j 2 
 ;

where 8i; j 2 
 ; M ij � 0, and
P n

j =1 M ij = 1 for all i 2 
 .

A stationary distribution is a probability distribution over the state space of a
Markov chain that remains invariant under the transition probabilities.

De�nition 3. (Stationary Distribution) Let M be a Markov chain with tran-
sition matrix M . A probability distribution � over the state space
 is a sta-
tionary distribution of M if

� M = �:

Note that another way to express this is that � is an eigenvector with all its
elements being nonnegative, and its associated eigenvalue is 1.

Example 1. Consider a Markov chain represented by a random walk on the
nodes of an n-cycle. At each step, there is a1=2 probability of staying at the
current node, a 1=4 probability of moving left, and a 1=4 probability of moving
right. The uniform distribution, which assigns a probability of 1=n to each node,
acts as a stationary distribution for this chain, because it remains constant after
performing a single step in the chain.

For Markov chains, irreducibility and aperiodicity are essential properties that
ensure the existence and uniqueness of a stationary distribution.

De�nition 4. (Irreducibility) A Markov chain with transition matrix M is
irreducible if there exists a sequence of transitions between any pair of states
i; j 2 
 with positive probability

8i; j 2 
 ; 9t 2 N s.t. (M t ) ij > 0:

De�nition 5. (Aperiodicity) A Markov chain with transition matrix M is ape-
riodic if for all states i 2 
 , the greatest common divisor of the setf t 2 N :
(M t ) ii > 0g equals 1.

Theorem 1. If a Markov chain M is irreducible then it has a unique stationary
distribution � .

A Markov chain is said to be ergodic if it is both irreducible and aperiodic.
Hence we derive the de�nition of ergodicity as follows.

Theorem 2. (Convergence to stationary distribution) If a Markov chain M is
ergodic, then there exists a unique stationary distribution� such that for any
given (initial) distribution � , lim t !1 � M t = � .

De�nition 6. (Reversibility) An ergodic Markov chain is reversible if the sta-
tionary distribution � satis�es the detailed balance equations:8i; j 2 
 ; � i M ij =
� j M ji
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3.2 Coupling

Coupling is a technique used in probability theory to study the convergence
of Markov chains. It involves constructing two Markov chains on the same
probability space that eventually couple or synchronize their states. We will
employ this technique in subsequent proofs. In short, the term coupling in
probability refers to creating a joint distribution from two separate distributions,
� and 
 , with the resulting joint distribution having � and 
 as its marginals.
This coupling can provide valuable insight into the di�erence between the two
distributions, measured by the total variation distance. Suppose�; 
 are two
distributions on 
, we want to de�ne measures that enable us to compare � and

 .

De�nition 7. (Coupling) A coupling ! is a joint distribution on 
 � 
 such
that

8y;
X

x 2 


! (x; y) = 
 (y);

8x;
X

y2 


! (x; y) = � (x):

where �; 
 are two distributions on 
 .

Example 2. Consider a Markov chain on the state space
 = f 0; 1g with the
following transition probability matrix M :

M =
�

0:7 0:3
0:6 0:4

�

We want to study the convergence of this Markov chain to its stationary distri-
bution. To do this, we construct two copies of the Markov chain, sayX and
Y , with initial states x0 and y0, respectively, wherex0 6= y0. Now we de�ne a
coupling of these two chains such that:

ˆ If X t = Yt : 1) If X t = Yt = 0 , then X t +1 = Yt +1 with probability 0.7 both



Note that this is only one possible coupling for the given Markov chain. Coupling
works as long as the following conditions are satis�ed:

ˆ If X and Y are in the same state (i.e.,X t = Yt ), they stay synchronized
(i.e., X t +1 = Yt +1 )

ˆ If X and Y are in di�erent states, they may synchronize with some prob-
ability

By constructing the coupled Markov chains X and Y, we can analyze the syn-
chronization time (i.e., the time it takes for the chains to reach the same state)
and use this information to study the convergence to the stationary distribution.

We also introduce a measure of the di�erence between two probability dis-
tributions. It is de�ned as the sum of the absolute di�erences between the
probabilities assigned to each event by the two distributions.

De�nition 8. (Total Variation Distance) The total variation distance be-
tween probability distributions � and 
 is de�ned as

dT V := sup
A 2 


j�



Proof. For any event A � 
 and coupling ( X; Y ) for � and 
 ,

� (A) � 
 (A) = P[X 2 A] � P [Y 2 A]

= P[X 2 A; X = Y ] + P[X 2 A; X 6= Y ] � P [Y 2 A; X = Y ] � P [Y 2 A; X 6= Y ]

= P[X 2 A; X 6= Y ] � P [Y 2 A; X 6= Y ]

� P [X 6= Y ]

The intuition is that we want to �nd a coupling ( X; Y ) s.t. X 6= Y only
if � (x) 6= 
 (x) i.e. x is in the marginals of ! coincide with � and 
 . The
second line involves three cases when we randomly select a pointx in 
: 1)
X 2 A; Y 2 A; 2) X 2 A; Y =2 A; 3) X =2 A; Y 2 A. In case 1), we setX = Y ;
in case 2) and 3), we setX 6= Y . Similarly, we can show that


 (A) � � (A) � P [X 6= Y ];

and hence
dT V = sup

A 2 

j� (A) � 
 (A)j � P [X 6= Y ];

3.3 Galton-Watson Branching Process

The Galton-Watson branching process (or GW-process for short) is a mathe-
matical model that describes the evolution of a population over time. Formally,
the GW-process can be de�ned as a discrete-time branching process, where the
number of o�spring produced by each individual in the population is modeled
as a random variable. This random variable is typically assumed to follow a cer-
tain probability distribution, such as the Poisson distribution or the geometric
distribution, which determines the average number of o�spring and the vari-
ance in the number of o�spring. The size of the population at any given time
is given by the sum of the number of o�spring produced by each individual in
the previous generation.

The GW-process is used to model a variety of real-world systems, including
the spread of diseases, the growth of populations, and the evolution of species.
By analyzing the behavior of the GW-process, it is possible to obtain informa-
tion about the long-term behavior of the population, such as the probability of
extinction or the average population size over time.

Example 3. Consider a branching process modeling population growth, where
each individual can have 0, 1, or 2 o�spring with probabilities0:4; 0:4 and 0:2, re-
spectively. Starting with a single individual (generation 0), the process unfolds in
discrete generations. Each individual in generationn produces a random number
of o�spring (0, 1, or 2) according to the given probabilities, forming generation
n + 1 . This Galton-Watson process models the evolution of the population over
time, capturing growth or extinction dynamics.
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3.3.1 Single-type Branching Process

The most common formulation of a branching process isGalton{Watson pro-
cess.

De�nition 9. A Galton-Watson process is a discrete-time Markov chainf M n =
0; 1; 2; : : : g on 
 , where M n denote the number of individuals onnth level, with
transition function de�ned in terms of o�spring distribution f pk g, where k =
0; 1; 2; � � � , pk � 0, and

P
pk = 1 , by

P(i; j ) = Pf M n +1



3.3.2 Multi-type Branching Process

In many scenarios, the individuals in a branching process are not identical.
Some examples of this include: 1) Population Genetics - where the inheritance
of alleles can be modeled by a 3-type branching process that corresponds to the
genotypes; 2) Physics - such as cosmic-ray cascades that involve both electrons
and photons and can be modeled by a 2-type branching process.Multi-type
branching process refers to a mathematical model that describes the evolution
of a population in which individuals can give rise to o�spring of multiple types,
and the number and type of o�spring is determined by a probability distribution
that depends on the current state of the individual and its ancestry. In our case,
we can form the multi-type branching process as [10].

De�nition 10. A multi ( � � type) Galton-Watson process is a Markov chain
f M �

n = 0 ; 1; 2; : : : g on 
 � , where M n is a � -dimensional vector whosei th entry
gives the number of individuals of typei on the nth level, with transition function

P(x; y ) = Pf M n +1 = y jM n = xg; x; y 2 
 � :

Now let mij



4 Problem De�nition

We now turn to the reconstruction problem. When the distribution of the
process onnth level is independent of the root value asn goes to in�nity, we
say that the root is non-reconstructible . In this case, we have no way to
reconstruct given this "same" distribution. Following this intuition, we can
formally de�ne non-reconstructibility as follows.

De�nition 11. Given Markov chain M with transition matrix M and two trees
generated from random roots that are independent, where distributions of level
n are denoted as� n and 
 n , then the root is non-reconstructible if

lim
n !1

dT V (� n ; 
 n ) = 0 (6)

Following Lemma 1, suppose we create random variablesX; Y with probability
distributions � n and 
 n , then we have

lim
n !1

P(X 6= Y) = 0

if the root is non-reconstructible.

5 Recap on M 2� 2 transition matrix

Mossel [11] has showed that the information of the root can not be reconstructed
for the d-ary tree and binary symmetric channel M where transition matrix

M =
�

1 � � 1 � 1

1 � � 2 � 2

�
(7)

when j� 2(M )j = j� 2 � � 1j � 1
d .

Theorem 5. Let M be in form (7). Take integer d s.t. jd� 2(M )j � 1, then the
root is non-reconstructible for the d-ary tree.

5.1 Proof I

We �rst introduce the random process called � -percolation [11]. Denote the
d� ary tree as T = f V; Eg, where V represents the set of vertices (nodes) inT,
and E represents the set of edges. Consider� : E ! f 0; 1g which maps from



parts: 1) copying the original distribution; 2) broadcast via matrix N

Consider � = � 2(M ) = j� 1 � � 2j.

If � 1 � � 2 < 0, then � = � 2 � � 1. Let N = I , where I is the identity matrix�
1 0
0 1

�
, and v = (1 � � 2 ;� 2 )

1� � . Then

M = ( � 2 � � 1)I +
�

1 � � 2 � 1

1 � � 2 � 1

�
;

so for each row vectorM i; � in M , we have

M i; � = � I i; � + (1 � � ) �
(1 � � 2; � 1)

1 � �
= � N i; � + (1 � � )v :

Then similarly, if � 1 � � 2 > 0, then � = � 1 � � 2. Let N = J, whereJ =
�

0 1
1 0

�
,

and v = (1 � � 1 ;� 2 )
1� � . Then

M = ( � 1 � � 2)J +
�

1 � � 1 � 2

1 � � 1 � 2

�
;

so for each row vectorM i; � in M , we also have

M i; � = � J i; � + (1 � � ) �
(1 � � 1; � 2)

1 � �
= � N i; � + (1 � � )v :

We now show that whend� � 1, the root is non-reconstructible given transition
matrix M . In fact, for any transition matrix that can be written in the form
(8), the broadcast process is non-reconstructible.

We simulate the broadcast ond� ary tree T = f V; Eg with root node � 2 

as a �



Then according the de�nition of � (v; v0), we de�ne the procedure as follows

v0 =
�

Nv (� (v)) if � ((v; v0) = 1
Yv if � ((v; v0) = 0

Therefore, for any nodev 2 V , we have probability � to perform the transition
by M , and probability 1 � � by Y , and the two di�erent processes are indepen-
dent.

In this way, we obtain a coupling of the two distributions on nth level of T.
Let the set of vertices that has path to root node � that contains only set of
edgesE 0 s.t. � (E 0) = 1 be L , and let the set of vertices at nth level be Sn .
Let the probability distribution given root, say � � , at nth level be � n . Then if
L \ Sn = ; , we obtain same distribution on nth level given any value of root� .
Then since

max
� � ;� 
 2 


P(� n 6= 
 n ) � P(L \ Sn = ; );

and since it has been proved in [12] that whend� � 1,

lim
n !1

P(L \ Sn = ; ) = 0 ;

we have
lim

n !1
max

� � ;� 
 2 

P(� n 6= 
 n ) = 0 ;

which implies that the root is non-reconstructible.

5.2 Proof II

An alternative proof using coupling is proposed as follows.

Proof. Say � n and 
 n are distributions of nth level of trees started with di�erent
root values. Let X n ; Yn be random variables with probability distributions � n

and 
 n . By Lemma 1, we have

dT V (�; 
 ) � P(X 6= Y);

so P(X 6= Y) is an upper bound of dT V . Now since M =
�

1 � � 1 � 1

1 � � 2 � 2

�
,

� 2(M ) = j� 1 � � 2j � 1



Thus given that j� 1 � � 2j � 1
d , we have

lim
n !1

P(X n;i 6= Yn;i ) = lim
n !1

j� 1 � � 2jn = 0 ;

which implies that

lim
n !1

dT V (� n ; 
 n ) � lim
n !1

P(X n 6= Yn ) = 0 :

Therefore, we've showed that whenn goes to in�nity, X n +1 ;i and Yn +1 ;i always
agree.

6 Extend to M 3� 3 transition matrix

Now we extend Theorem 5 to 3� 3 transition matrices, simulating the transitions
as multi-type branching processes with 3 types. We start with the case
when M is positive de�nite (PSD).

6.1 Symmetric 3 � 3 transition matrix with 2 variables

In order to apply coupling, we �rst consider the following case where transition
matrix M is symmetric and reversible with 2 variables.

Corollary 1. Let

M =

0

@
1 � � 1 � � 2 � 1 � 2

� 1 1 � � 1 � � 2 � 2

� 2 � 2 1 � 2� 2

1

A (10)

be a positive de�nite symmetric transition matrix. Then if we take integer d s.t.
jd� 2(M )j � 1, the root is non-reconstructible for the d-ary tree.

Given M in form 6.3, we denote the three states asA, B , and C, corresponds
to row 1, 2, and 3. Note that we have a choice for coupling the two broadcast
processes. Now since we want to compare the broadcast distributions given two
di�erent root nodes, we de�ne the coupled new statesA A , B B , C C , A B ,
A C , and B C . Note that when it reaches stateA A , B B , or C C , two cou-
pled distribution "agrees" and hence extinct.

Hence we only look at typesA B , A C , and B C , where two distributions
disagree. Hence we let the coupling matrix be in the form

0

@
P(A B ! A B ) P(A B ! A C ) P(A B ! B C )
P(A C ! A B ) P(A C ! A C ) P(A C ! B C )
P(B C ! A B ) P(B C ! A C ) P(B C ! B C )

1

A

We �rst want to show that there exists a coupling s.t.

� 2(M ) = � (coupling matrix) (11)
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by doing a case analysis. Note that given� 1 + � 2 + � 3 = 1, we use the sign of

� 1 � � 2

� 2 � 1=3

2� 1 + � 2 � 1

2� 2 + � 1 � 1

to determine the sign of the entries ofM . We consider� 1 � � 2 and � 2 � 1=3 as
major cases, and the other two in sub cases.

Case I: Let � 1 � � 2; � 2 � 1
3 , then 2� 1 + � 2 � 1 � 2� 2 + � 1 � 1 � 0 ) � 1 �

1 � � 1 � � 2; � 2 � 1 � � 1 � � 2.

A B A C B C
A B 1 � 2� 1 � � 2 0 0
A C 1 � � 1 � 2� 2 0 0
B C � 2 � � 1 0 1� 3� 2

j� 2(M )j = � = 1 � 2� 1 � � 2

Case II: Let � 1 � � 2; � 2 > 1
3 , then 2� 1 + � 2 � 1 > 0 only if 2� 2 + � 1 � 1 > 0.

i) � 2 � 1 � � 1 � � 2, � 1 � 1 � � 1 � � 2

A B A C B C
A B 1 � 2� 1 � � 2 0 0
A C 1 � � 1 2



� 2(M ) = � = 3 � 2 � 1

Case III: Let � 1 > � 2; � 2 � 1
3 , then 2� 2 + � 1 � 1 > 0 only if 2� 1 + � 2 � 1 > 0.

i) � 1 � 1 � � 1 � � 2, � 2 � 1 � � 1 � �



6.2 Extend to certain distributions

Claim 1. Given d� ary tree formed by broadcast processM and transition ma-
trix M . Let M n denote the vector of node counts for each type at level



nodes, then we have

E[X ] = 1 +
dX

k=1

�
d
k

�
(1 � � )d� k � k � (k � E [X ])

= 1 + �
dX

k=1

d
k

�
d � 1
k � 1

�
(1 � � )d� k � k � 1 � k � E [X ]

= 1 + �E [X ]d
dX

k=1

�
� � 1
k � 1

�
(1 � � )d� k � k � 1

= 1 + d� � E [X ]

which implies that

E [X ] =
1

1 � d�

and thus

E[Y ] = E[Xd � (X � 1)] =
1

1 � d�
� d � (

1
1 � d�

� 1)

=
d � 1 + 1 � d�

1 � d�

=
d � 1

1 � d�
+ 1

=
(1 � � )d
1 � d�

Hence Theorem 6 follows.

Theorem 6. Given d� ary tree TM formed by transition matrix M with second
eigenvalue� 2. Let TC be a d-regular tree formed by coupling matrixC = (1 �
� )M + � I . Let the expected number of children forTM and TC be E[M ] and
E[C] respectively, and letE [M ] < d; E [C] = d. Then TM is non-reconstructible
if TC is non-reconstructible.

Proof. SupposeTC is non-reconstructible, then TM is non-reconstructible since
the it corresponds to the e�ective parts of TC . Since C is symmetric and the
second eigenvalue ofC is (1 � � )� 2 + � by construction, if dj(1 � � )� 2 + � j < 1,
then by Corollary 1, tree TC formed by C is non-reconstructible. Now we want
to show that if dj� 2j < 1, then dj(1 � � )� 2 + � j < 1.

By Lemma 2, we have

d = E[Y ] =
(1 � � )d
1 � d�

:
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Then

dj� 2j < 1

) E [M ]j� 2j < 1

)
(1 � � )d
1 � d�

j� 2j < 1

) (1 � � )dj� 2j < 1 � dj� 2j

) dj(1 � � )� 2 + � j < 1

Therefore, if dj� 2j < 1, dj(1 � � )� 2 + � j < 1, which implies that TC is non-
reconstructible, hence the e�ective part of TC is non-reconstructible, and thus
TM is non-reconstructible.

Therefore, we are able to show the non-reconstructibility of the tree with broad-
cast matrix M when E[children] < d .

6.3 Generalized case for 3 � 3 matrix with certain distri-
butions

Now since we've proved in§ 6.1 that when the transition matrix is 3 � 3 and is
PSD, coupling proves the conjecture that whenE[number of children]� � 2(M ) <
1, the root non-reconstructible, we want to extend it to trees with general o�-
spring distributions. We try to prove it case by case after obtaining the coupling
matrix following what we did in §6.1. We start with the 3 3� 3 transition matrix
in following distribution. Given

M =

0

@
1 � a � b a b

a 1 � a � c c
b c 1 � b� c

1

A

whose eigenvalues are 1 and 1� a � b � c �
p

a2 � ab+ b2 � ac � bc+ c2, we
have 6 combinations ofa; b; c that forms the general cases, which are

a � b � c

a � c � b

b � a � c

b � c � a

c � a � b

c � b � a

Now consider the expressions

2a + b;2a + c

2b+ a; 2b+ c

2c + a; 2c + b

18



Let ab; ac; ba; bc; ca; cbbe there abbreviations. Then WLOG, given any case,
say a � b � c, we have 9 sub-cases given any general case. Givena � b � c,
then if ab � 1, all the other expressions are all less or equal to 1. Ifab � 1,
either ac � 1 or ba � 1 leads to all the other expressions follows all less or equal
to 1. Continue this way, we can have the cases listed below:
8
>>>>>>>>>>>><

>>>>>>>>>>>>:

ab � 1

8
>>>>>>>>>><

>>>>>>>>>>:

ac � 1; ba � 1

8
>>>><

>>>>:

bc� 1; ca � 1
�

cb� 1
cb� 1

bc� 1; ca � 1
bc� 1; ca � 1
bc� 1; ca � 1

ac � 1; ba � 1
ac � 1; ba � 1
ac � 1; ba � 1

ab � 1

Imagine it as a tree. Every leaf node means 1 case where all the expressions
follows (in the order of ab; ac; ba; bc; ca; cbfor casea � b � c) have to be less or
equal to 1.

Hence we have in total 54 cases.

Now similar to what we did for 2 � 2 matrices, for each case, we compare the
second eigenvalue of the transition matrix and the spectral radius of the coupling
matrix. Then we notice that when

2a + b; 2a + c; 2b+ a > 1

2b+ c; 2c + a; 2c + b < 1

the coupling matrix is as follows

A B A C B C
A B 2a + c � 1 b� c 0
A C 2b+ a � 1 0 1� 2b� c
B C 0 a � b 1 � a � 2c

and we obtain the result

� 2(M ) 6= � (coupling matrix) (12)

Hence there exists a case where coupling fails. For instance, let

M =

0

B
B
B
B
@

0 2
3

1
3

2
3

1
3 0

1
3 0 2

3

1

C
C
C
C
A

:
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Then in the bad case where the coupling matrix is as follows
0

B
B
B
B
@

1
3

1
3 0

1
3 0 1

3

0 1
3

2
3

1

C
C
C
C
A

;

we have
� 2(M ) =

1
p

3
but

� (coupling matrix) =
2
3

:

In our future work, we plan to investigate the non-symmetric case further and
solve the bad case.
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