
On NP-intermediate, Isomorphism problems, and Polynomial
Hierarchy

Xin Lu

Abstract. Since being introduced, P and NP





De�nition 4 (Oracle Turing machine). An oracle Turing machine is a Turing machine
augmented by an oracle. During the execution of Turing machine, it can enter the state such
that it will plug in certain input into the oracle and return the answer based on the output
of the oracle.

Naturally, one can view oracle as a black box. It empowers Turing machine the ability
to process the input into certain format such that once it is solved by the oracle, the output
of the Turing machine can be built.

De�nition 5 (Class NP ). A language L is in NP if there exists a polynomial time oracle
Turing machine M such that x is accepted by M if and only if x 2 L.

It is obvious that if a problem is in P , then a problem is in NP . In other words, P � NP .
However, whether this inclusion is a proper one is the famous Pvs:NP problem. Yet, it
will seem to be more natural to believe that not all computable problems can be solved in
polynomial time. Hence, computer scientists in general hold the belief that P 6= NP , despite
the lacking of actual proof.

With a more in-depth study in the class NP , Stephen Cook discovered a special class of
problems within NP . That is, the NP -complete problems. These problems can be viewed
as the upper bound of the level of di�culty for problems in NP . In other words, if a problem
is in NP , then any solver that solves NP -complete problems will be able to solve it. Its
rigorous de�nition will require knowledge on reducibility, and hence is postponed to the next
section.

However, one can see that if any NP -complete problem is shown to be in P , then NP
will collapse to P . Yet if NP turns out not to collapse to P , are these two classes close?
In other words, if a problem does not belong to P , will it indicates that this problem is
NP -complete? In 1975, Richard Ladner showed that under the assumption that P 6= NP ,
one can prove that there exists an intermediate class of problems between them. That is,
there exist problems that belongs to neither P nor NP -complete, if P 6= NP .

The actual proof of this theorem is too long to be included in this paper. Yet, in the
next section, one will discuss the idea behind this theorem, and at the same time o�ering a
better preparation for later discussion.

II. Ladner’s Theorem

With the belief that P 6= NP





for each i, A contains a string x 62 LPi
, then clearly A cannot be decided by Pi. If one is

able to identify a systematic way to include a string x not in LPi
in A for all i, then one will

complete the proof for A 62 P .

Similar idea holds for showing B is not reducible to A. Saying that B is reducible to A
means that there exists an oracle Turing machine M(A) such that it decides B. Hence, to
show that B is not reducible to A, one can again enumerates over all polynomial time Turing
machine Mi with oracle A, denoting as Mi(A). Then, for each Mi(A), if A is constructed so
that there exists a string x 2 B having its output Mi(x) 62 A, one will show that B is not
decided by Mi(A).

Conceptually, this is easy to see why in this way, the theorem can be proven. The point is,
though, whether such A can be constructed, in a formal and systematical way. As mentioned,
a formal proof of this theorem will be too long to include. The de�nition of the problem
A provided by Ladner will be listed below, and a brief explanation on why it works will be
supplied. Yet for interesting reader, they can turn towards the paper itself to see the full
formal proof.

One will put A = fx 2 B j jT (x)j is eveng. The key then becomes if T is a Turing
machine that makes A a set satisfying conditions mentioned above. In the paper, T is
de�ned as:

On input x 6= 0n of length jxj = n, output T (0n).
On input 0n, if n = 0(so input is the empty string), output the empty string.

Otherwise, for n moves, reconstruct the sequence T (�); T (0); � � � ; T (0m), with m being
the last number computed within n moves.

If jT (0m)j is even, let i be the number such that 2i = jT (0m)j. Then for n steps,
explore all strings z in lexicon order and see if z 62 Pi. If not, output 12i. Otherwise, output
12i+1.

If jT (0m)j is odd, let i be the number such that 2i + 1 = jT (0m)j. Perform the
same thing as above, but this time see if z 62Mi(A). If not, output 12i+1, otherwise, output
12i+2.

It might be hard to understand in an intuitive way what T is doing. Yet, once you see
one step, you will understand all others. Viewing the case jT (0m)j being even as marking T
being in the state to construct A so that A 6= Pi, for the i de�ned in the step. In this case,
it will consecutively output even length for any input, making these strings a member of A
as long as it belongs to B. In other words, in this phrase, set A is made similar to B, where
B is chosen to be in NP -P . As a result, there must be strings belong to B but not LPi

and
as A starts to look similar to B, the string z will eventually be found. Other steps could be
explained similarly, and again detailed explanation is included in Ladner’s paper.

Concluding this section, a detailed explanation on the intuition behind Ladner’s proof is
supplied. As a consequence of the theorem, one knows that if P 6= NP , there exist problems
in the middle. However, if so, what are those problems? If one is able to identify these
potential intermediate problems, analysis on their algorithms might be able to o�er some



that have not yet been shown to be in P or NP -complete, leading into a strong belief that
it belongs to NP -intermediate.

On the other hand, subgraph isomorphism problem, a proven NP -complete problem,
holds similarity with graph isomorphism problem: it is clear that a solver for subgraph
isomorphism problem can easily solve graph isomorphism. Meanwhile, checking graph iso-
morphism seems to also be a necessary step in solving subgraph isomorphism problem. These
two problems will, in fact, be the main focus of the following two sections.

In the next section, one will explore the current developed algorithm for subgraph isomor-
phism problem, capturing the key characteristic of the algorithm and study its complexity
in terms of P and NP under certain condition.

III. Discussion on Subgraph Isomorphism Problem and

Its Algorithms

Motivated by the similarity between subgraph isomorphism problem and graph isomorphism
problem, one will like to compare these two problems in terms of their complexity, partic-
ularly since subgraph isomorphism problem is proven to be in NP -complete, while graph
isomorphism’s run time complexity remains as a mystery.

As planned above, in this section, discussion on the current algorithm for subgraph
isomorphism will be displayed. In fact, one will characterizes the algorithm and de�nes it as
a type. Then, a discussion on the lower bound of this algorithm will be held.

Before entering into the discussion, it is worthy to present a formal de�nition for the
subgraph isomorphism problem.

De�nition 8 (Subgraph Isomorphism Problem). Given input G and H, return whether or
not H is a subgraph of G.

Through years, there are various attempts on building up algorithms that will solve this
problem.However, in general, these algorithms run in exponential time of the input size,
unless the input is of a special type of graphs.

In this paper, the algorithm proposed by Cordella in 2004 will be the main focus. This
algorithm starts of with an empty proposal (which refers to proposed solution). Then, rely-
ing on a checker function F , it will attempt to extend the proposal and F will check if the
extended one remains a valid partial solution. In other words, if the extended proposal can
not be extend to a full valid solution, F will propagate this branch. A detailed high-level
description of the algorithm is as below [5] :

Input: G, H, and initial node(state) s with M(s0) = ;.
Output: mappings between two graphs, null if DNE

M(s):
IF M(s) covers all the nodes of H:

6



OUTPUT M(s)
ELSE:

FOREACH (n;m) edge can be extended

IF F (s; n;m) THEN

Compute next node(state) s
0

obtained by this extension

CALL M(s
0
)

OUTPUT null

So far, most algorithms that attempt to solve subgraph isomorphism problems are of
this manner. The question is, is this type of algorithm promising? In other words, will the
optimal algorithm shares the same structure as Cordella’s algorithm?

To think of that question, one should �rst consider the trivial algorithm, which constructs
all possible proposals and then check for validity. This algorithm, in general, is considered
not to be extendable to an algorithm with the optimal run time, as the number of subgraphs
in G with k vertices are exponentially many. Hence, the question becomes whether by
ensuring the current proposal is yet a valid partial solution, one is able to propagate enough
number of proposals so that the algorithm runs in optimal run time.

To formalize this idea, this paper proposes the below de�nition to captures the charac-
teristic of this type of algorithm.

De�nition 9 (Propogating Algorithm). An algorithm is said to be of propagating type if its
structure �ts in the below description:

i) Starts at root node n0 representing the initial state where the proposal is empty
ii) If at node ni, propagation checker returns false for current proposal, propagate all

proposals having the current proposal as a partial proposal.



Figure 1: Solution Space for Square abcd

Figure 2: Propagate at nk

Notice that when the algorithm reaches nk, as by no way can a graph isomorphic to H
has a node with degree > 2, the algorithm will propagate all nodes living in the subtree
rooted at nk.

8



Now, to analyze the potential of this type of algorithms, one can spot the two main parts
that play a crucial role in it. The �rst is that how many nodes the algorithm has to explored.
This determine the number of time the propagation checker will be invoked. The second
is how expensive it is to run the checker. In the remaining part of this paper, these two
portions will be decomposed and analyzed separately. The discussion will be laid out under
the assumption that this type of algorithm can actually achieve the actual optimal run time
for the problem, and hence directing the potential of this type of algorithm.

In this section, one will focus on the problem that how many time the propagation checker
is called. Since it is hard to model the e�ciency of the propagation checker, it will be hard
to approach it directly. In fact, this paper does not have a solid answer to this question.
Yet, instead, this paper consider the same question for the k-clique problem, which is an
NP -complete problem. Hence, subgraph isomorphism problem and the k-clique problem
should have the same solver, which indicates that the answer to this problem for k-clique
might as well apply to subgraph isomorphism problem.

In order to proceed, of course, a de�nition for the k-clique problem is needed.

De�nition 10 (k-clique). A clique C = (V 0; E 0) of a graph G = (V;E) has V 0 � V and
E 0 = ffv; wg j v; w 2 Eg, where E 0 � E as well. In other words, a clique is a complete
subgraph of G.

Naturally, one puts a k-clique of G as a k-complete subgraph of G.

With the de�nition of clique, one will be able to de�ne k-clique problem.

De�nition 11 (k-clique problem). Given a graph G and an input k, �nds if there exists a
k-clique in graph G.

Notice that both k-clique problem and subgraph isomorphism problem contains an ex-
ploration on subgraph of G, which is the primary intuition why these two problems are
equivalent (and in fact they are). Hence, perhaps with further work, one will be able to
nail down the bound for the number of time propagation checker is invoked for subgraph
isomorphism problem as well.

Theorem 2. If P 6= NP and a propagating algorithm can be the optimal algorithm for
k-clique problem, then enumerating all nodes visited by the propagating algorithm will be a
problem in NP � P .

Proof. Clearly, as k-clique problem is in NP , if the propagating algorithm achieves optimal
run time, its subprocess should not exceed the total run time. Thus, enumerating all nodes
visited by the propagating algorithm should be a problem in NP as well. Hence, if one can
show that the enumeration can not be done in P , the proof is completed.

The proof will proceed by contradiction. Suppose the enumeration can be done in poly-
nomial time (i.e. the problem is in P ). Then, by de�nition of propagation algorithm, the
propagation checker is called f(n) times, where n is the input size and f a polynomial
function.

9



As illustrated by the de�nition, a propagation checker return false if and only if the
proposal representing by the current node cannot be extended into a full solution. As
illustrated by the example, that is saying the current proposal is already inconsistent with
the desire solution. For k-clique problem, one candidate proposal checker will be the one that
checks if the current subgraph is partial isomorphic to k-complete graph. This is clear: if the
graph is not partially isomorphic to the k-complete graph, then no matter how one extends
the graph, the proposal contains a portion of graph that cannot be map isomorphically to
the k-complete graph. Hence, any graph extended from this point will fail to be a k-clique.
On the other hand, if the graph is partially isomorphic to the k-complete graph, simply
appending the di�erence of the vertex and edge sets on current proposal and k-complete
graph will yield a k-complete graph. Thus, this is a valid propagation checker.

Yet, this propagation checker only takes polynomial time. One only needs to verify if
all nodes included in current partial solution has fewer than

�
k
2

�
edges, which takes at most

O(m + n) times where m marks the size of edge set of G. Hence, the optimal propagation
algorithm should have the propagation checker with run time at most as bad as polynomial
run time.

Then, if there are only polynomial amount of nodes being visited by the propagation
algorithm of k-clique problem, it will run within polynomial time. Under NP 6= P and the
fact that k-clique problem is NP -complete, this cannot be the case. Hence, one has proven
the statement.

Thus, one has shown that for propagating algorithm, enumerating the nodes being visited
by the algorithm will be a problem in NP -P . If one believe in the similarity among subgraph
isomorphism problem and clique problem, one has the below conjecture.

Conjecture. If the optimal algorithm for subgraph isomorphism problem can be a propagat-
ing algorithm, enumerating nodes visited by this propagating algorithm for subgraph ismor-
phism will be a problem in NP � P , supposing P 6= NP .

However, only propagating when the algorithm �nds an inconsistency seems to be not
e�cient enough. Consider graph G and H where almost all subgraphs of G are isomorphic
to H except for one edge. If only propagating when inconsistency is met, for this example,
the algorithm have to almost fully explored all possible subgraphs before encountering an
inconsistency, assuming the worst case. This will indicate that such algorithm will remain
to be of exponential run time, unless certain order is put on the exploration to avoid the
worst case. In fact, Bonnici actually improves Cordella’s algorithm by assigning a heuristic
on the nodes such that exploration happens in a more favorable order [6]. Yet, despite this
modi�cation, the algorithm remains to have exponential run time.

All being said, it is hard to believe that the optimal algorithm for these problems could
be done by such algorithm, if one believes that the optimal algorithm does not run in
exponential time. This introduces another open problem that has not yet been proven:
does EXPTIME = NP? Here, EXPTIME captures all problems that can be decided in
exponential time.

10



Concluding this section, the paper has shown that if the optimal algorithm can be sit-



Therefore, one can see that a propagating algorithm for subgraph isomorphism problem
will have its propagation checker runs at a complexity at least as bad as solver for graph iso-
morphism. This seems to suggest that if graph isomorphism is NP -complete, then subgraph
isomorphism will be harder than it non-trivially, if P 6= NP .

In fact, this intuition seems to be in right direction. It has been proven by Schoning that
under the certain assumption, graph isomorphism will not be NP -complete [4]. To close this
section, a brief introduction of this theorem will be provided.

In order to introduce this theorem, certain backo-



V. Conclusion


