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1 Introduction

Let’s start with some necessary de�nitions

De�nition 1 (Sumset). Let A;B ∈ G where (G;+) is an Abelian Group, then the sumset of A;B is

de�ned to be A +B = {a + b ∣ a ∈ A; b ∈ B}.

De�nition 2 (Product Set). Let A;B ∈ G where (G; ⋅) is an Abelian Monoid, then the product set of

A;B is de�ned to be A ⋅B = {a ⋅ b ∣ a ∈ A; b ∈ B}.

Both de�nitions are de�ned in general setting and we are normally working with the construction of

G being Z or ZN (Multiplicative group of integers modulo n) or R.

The sum set and product set is �rst investigated by Erdos and Szemeredi[1] in 1983. In their paper,

they proved that for A ⊆ Z being a set of integers, then

max(∣A +A∣; ∣A ⋅A∣) ≥ c∣A∣1+�

for some small and positive � where ∣ ⋅ ∣ denotes the size of the set. They further conjectured that it

should be the case

max(∣A +A∣; ∣A ⋅A∣) ≥ c∣A∣2−�

for any positive �.

This problem is further analyzed in the setting where A ⊆ R and after works by Nathanson[2], Ford[3]

and Chang[4], Elekes[5] shows that � ≥ 1
4
. This result is further extended to complex numbers by

Toth[6] and Solymosi[7]. The best know bound is proven by Solymosi[8] which is

max(∣A +A∣; ∣A ⋅A∣) ≥ c∣A∣ 14
11

log
3

11 ∣A∣

This is further analyzed in the setting of �nite �eld but the situation becomes more complex as the key

tool used in the analysis, Szemeredi-Trotter incidence theorem, doesn’t hold in the same generality. It
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is �rst shown by Bourgain, Glibichuk and Konyagin [9] and Bourgain, Katz and Tao[10] that if q is a

prime, than if ∣A∣ ≤ Cq1−�, for some � > 0, then there exists � > 0 such that

max{∣A +A∣; ∣A ⋅A∣} ≥ c∣A∣1+�

Hart, Iosevich and Solymosi [11] further improved this bound using incidence theorem and get

max{∣A +A∣; ∣A ⋅A∣} ≥ c∣A∣ 8
7

This gives us a better understanding of the size of ∣A +A∣ and ∣A ⋅A∣. In this paper, we will look at

the setting where A



Figure 1: Relationship between p and ∣A +A∣

Now we can analyze this problem analytically and check if this is consistent with what we have in our

simulation.

Theorem 1. Let A ⊆ ZN be a randomly chosen subset where each element of ZN is independently

chosen to be in A with probability p. If N is odd, then

E∣A +A∣ = N (1 − (1 − p)(1 − p2)N−1
2 )

If N is even, then

E∣A +A∣ = N (2 − (1 − p)2(1 − p2)N
2 −1 − (1 − p2)N

2

2
)

Proof.

For all N , we have

E[∣A +A∣] = E [
N−1

∑
i=0

1A+A(i)] =
N−1

∑
i=0

E [1A+A(i)] =
N−1

∑
i=0

P (i ∈ A +A)

Note that i ∈ A +A if and only if there is some u; v ∈ A where u + v = i mod N

Therefore, if i /∈ A+A, it has to be the case that for all (u; v) pair where u+ v = i mod N , at least one

of them is not in A

If u ≠ v, then the possibility of at least one of them not in A is 1 − p2.

On the other hand, if u = v, then the possibility of at least one of them not in A is 1 − p
So the problem is essentially reduced to �nding the number of such pairs
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Suppose N is odd

I claim that for all i ∈ ZN , there is exactly one element



Figure 2: Comparison of simulation and analytic result

3 E[∣A + A∣] in Z

Now whatn



Figure 3: Relationship between p and ∣A +A∣

Now we can analyze this problem analytically and check if this is consistent with what we have in our

simulation. For simplicity, we will work with the case N being even so exactly half of the numbers in

{1;2; : : : ;N} are even and half of them are odd

Theorem 2. Let A ⊆ Z be a randomly chosen subset where each element of {1;2; :::;N} is independently

chosen to be in A with probability p. If N is even, then

E∣A +A∣ = 2N − (4 − 2p − p2)1 − (1 − p2)N
2

p2

Proof. This time, we have

E[∣A +A∣] = E [∑
i∈Z

1A+A(i)] = ∑
i∈Z
E [1A+A(i)] = ∑

i∈Z
P (i ∈ A +A) =

2N

∑
i=1

P (i ∈ A +A)

Note that we are summing from 1 simply for the simplicity of keeping the number of even and odd

number the same. P (1 ∈ A +A) = 0 so it won’t e�ect our analysis.

We can still reduce the problem to �nding the number of pairs of (u; v) ∈ [1;N] × [1;N] s.t. u + v = i
and u ≠ v and number of u ∈ [1;N] where u + u = i
There are a total of 4 cases for the value of i: whether it is ≤ N or > N and whether it is odd or even

Case 1: i ∈ [1;N] and i is odd

Case 2: i ∈ [1;N] and i is even

Case 3: i ∈ [N + 1;2N] and i is odd

Case 4: i ∈ [N + 1;2N] and i is even

I claim that in each case, the number of (u; v) pairs and u we are looking for are as follows:
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Case 1: There are i−1
2

distinct (u; v) pair and 0 u

Case 2: There are i
2

− 1 distinct (u; v) pair and 1 u

Case 3: There are i−1
2

− (i −N − 1) distinct (u; v) pair and 0 u

Case 4: There are i
2

− 1 − (i −N − 1) distinct (u; v) pair and 1 u

This claim is denoted as lemma 3 and is proved in the appendix

As before, the possibility of at least one element of the (u; v) pair not in A is 1 −p2 and the possibility

of u not in A is 1 − p
Using this fact and the result of lemma 3, we can plug in the expression like what we did before and

get

E[∣A +A∣] =
2N

∑
i=1

P (i ∈ A +A)

=
N

∑
i=1;odd

1 − (1 − p2) i−1
2



For part III, we have

III =
2N

∑
i=N+1;odd

1 − (1 − p2) i−1
2 −(i−N−1)

=
N

∑
i=1;odd

1 − (1 − p2) i+N−1
2 −(i−1)

=
N

∑
i=1;odd

1 − (1 − p2)N−i+1
2

=
N
2

∑
k=1

1 − (1 − p2)
N−(2k−1)+1

2

= N
2

− (1 − p2)
N
2

∑
k=1

(1 − p2)N
2 −k

= N
2

− (1 − p2)
N
2 −1

∑
k=0

(1 − p2)k

= N
2

− (1 − p2)1 − (1 − p2)N
2

p2

For part IV , we have

IV =
2N

∑
i=N+1;even

1 − (1 − p2) i
2−1−(i−N−1)(1 − p)

=
N

∑
i=1;even

1 − (1 − p2) i+N
2 −1−(i−1)(1 − p)

=
N

∑
i=1;even

1 − (1 − p2)N−i
2 (1 − p)

=
N
2

∑
k=1

1 − (1 − p2)
N−(2k)

2 (1 − p)

= N
2

− (1 − p)
N
2

∑
k=1

(1 − p2)N
2 −k

= N
2

− (1 − p)
N
2 −1

∑
k=0

(1 − p2)k

= N
2

− (1 − p)1 − (1 − p2)N
2

p2

Putting everything together, we have

E[∣A +A∣] = I + II + III + IV

= N
2

− 1 − (1 − p2)N
2

p2
+ N

2
− (1 − p)1 − (1 − p2)N

2

p
+ N

2
− (1 − p2)1 − (1 − p2)N

2

p2
+ N

2
− (1 − p)1 − (1 − p2)N

2

p2

= 2N − (4 − 2p − p2)1 − (1 − p2)N
2



Figure 4: Comparison of simulation and analytic result

We could so similar calculation with the case N being odd and we will have

Theorem 3. Let A ⊆ Z be a randomly chosen subset where each element of {1;2; :::;N} is independently

chosen to be in A with probability p. If N is odd, then

E∣A +A∣ = 2N − (2 − p)1 − (1 − p2)N+1
2

p2
− (2 − p − p2)1 − (1 − p2)N−1

2

p2

The proof is almost identical to the N being even counter part except at handling some index more

carefully so it is omitted.

4 E[A ⋅ A] in Zp

Now we want to investigate the expected size of A +A in Zp and the problem we are trying to solve

is as follows

Question 3. Let A ∈ ZN be a randomly chosen subset where each element of ZN is independently

chosen to be in A with probability p, then what is the expected size of ∣A ⋅A∣?

Again, let’s begin by doing some simulation to have an intuitive understanding. The maximum size of

A ⋅A is N so we divide the mean by 2N − 1 to make the graph on the same scale.

But this time, we need to be careful on the choice of N because ZN will be a monoid or a group

depending on whether N is a prime so when doing experiment, it is better to put in some prime

numbers and see if there is any di�erence
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The result is given in Figure 5 for the case N = 19;20;47;50;97;100;241;250;499 and 500 which cor-

responds to di�erent lines in the graph. We can see that as p goes to 1, the simulated expected size

of ∣A + A∣ converges to N in all cases. However, we can see that when N is prime, we are having

faster convergence rate. For example, the blue line corresponds to the case n = 19 and the orange line

corresponds to the case n = 20. Though 19 < 20, the convergence rate is faster for the n = 19 case.

Similar thing is happening for the pair (47;50), (97;100), (241;250) and (499;500). So instead of

having a pure monotonic relationship between N and the convergence rate, we are having two cases,

one is N being prime and one is N being composite. In each case, the convergence rate increases as

N





Proof.

Note that p ∈ (0;1) so we have

p > p2

1 − p < 1 − p2

(1 − p)e(i)(1 − p2)d(i)−e(i) ≤ (1 − p2)e(i)(1 − p2)d(i)−e(i)

1 − (1 − p)e(i)(1 − p2)d(i)−e(i) ≥ 1 − (1 − p2)e(i)(1 − p2)d(i)−e(i)

1 − (1 − p)e(i)(1 − p2)d(i)−e(i) ≥ 1 − (1 − p2)d(i)

This is true for all i so we can plug this into the conclusion of the previous theorem and get

E[∣A ⋅A∣] ≥
N

∑
i=1

1 − (1 − p2)d(i)

Now we have successfully removed e(i) from our expression and we want to further remove this d(i)
I claim that ∑N−1

i=0 d(i) = N(N+1)

2
and this is proven in appendix as lemma 5

To utilize this equation, we can use Taylor Theorem to expand (1 − p2)d(i) as a function of p2

The underlying function will be f(x) = (1 − x)d(i) where d(i) is some �xed constant for now that

satis�ed the property d(i) ≥ 0 and d(i) ∈ Z

Then we have f ′(x) = −d(i)(1 − x)d(i)−1 and f ′′(x) = d(i)(d(i) − 1)(1 − x)d(i)−2

So we can expand f at 0 and by Taylor Theorem, we have

f(x) = 1 − d(i)x + d(i)(d(i) − 1)(1 − �)2

2
x2

for some � ∈ (0; x)
So if we plug in x = p2, we have

(1 − p2)d(i) = 1 − d(i)p2 + d(i)(d(i) − 1)(1 − �)2

2
p4

for some � ∈ (0; p2)
Plugging this into the bound we have for E[∣A ⋅A∣] gives us

E[∣A ⋅A∣] ≥
N−1

∑
i=0

1 − 1 + d(i)p2 − d(i)(d(i) − 1)(1 − �)2

2
p4

=
N−1

∑
i=0

d(i)p2 − d(i)(d(i) − 1)(1 − �)2

2
p4

≥
N−1

∑
i=0

d(i)p2 − d(i)(d(i) − 1)
2

p4

= p2N(N + 1)
2

− p4

2

N−1

∑
i=0

d(i)(d(i) − 1)

At this point, the second term involves the sum of d(i)2 which we don’t have an estimate on. What

we could do is to pull out one of them as maxd(i) and get a bound on this term.

I claim that maxi2



We can see that d(0) is like the outlier that would mess up with our estimation on maxd(i) by a factor

of roughly 2. To have a tighter bound, we split the sum into two parts

[∣A ⋅A∣] ≥ p2N(N + 1)
2

− p4

2
d(0)(d(0) − 1) − p4

2

N−1

∑
i=1

d(i)(d(i) − 1)

≥ p2N(N + 1)
2

− p4

2
N(N − 1) − p4

2
max

i∈ZN ;i≠0
(d(i))

N−1

∑
i=1

d(i) − 1

= p2N(N + 1)
2

− p4

2
N(N − 1) − p4

2

N + 1

2
(N(N + 1)

2
−N − (N − 1))

= p2N(N + 1)
2

− p4

2
N(N − 1) − p4

8
(N + 1)(N2 − 3N + 2)

= p2N(N + 1)
2

− p4

8
(N − 1)(N2 + 3N − 2)

We could interpret this result as p2N(N+1)

2
is like the main term we are interested in and the −p

4

8
(N −

1)(N2 + 3N − 2) is the remainder. We can solve for the range of p where the main term is dominant

and the range is p2 ≤ 4N(N+1)

(N−1)(N2+3N−2)
which is roughly on the order of 1

N
. This is not a coincidence

and is a direct result of our estimation on maxd(i).
Now let’s utilize the simulation tool again and see how this lower bound is performing. Since we are

only investigating the case when N is a prime, we only check the case when N = 19;47;97;241;499 and

compare the simulated result with the lower bound. The result is given in Figure 6 where the right

one is a zoomed in graph to see its performance in the low p range more clearly. The lower bounds

are all plotted only in the rang 0 ≤ p2 ≤ 4N(N+1)

(N−1)(N2+3N−2)
.

We can see that the sharpness of the bound increases as N increases. If we take the same 0 ≤ p2 <
4N(N+1)

(N−1)(N2+3N−2)
as the range of p, then asymptotically, the remainder will be dominated and the

meaning is that every pair of (�;�) ∈ A ⋅A is given us di�erent � ⋅�. But it is also worth noticing that

the upper bound of the range of p also goes to 0 asymptotically. So only when we are selecting the

elements for A \sparse" and random enough, can we obtain this uniqueness.
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Figure 6: Comparison of simulation and analytical lower bound

5 E∣A ⋅ A∣ in Z

The extension of the problem from ZN to Zis very natural and the question we have now is

Question 4. Let A ∈ {1;2; : : : ;N} be a randomly chosen subset where each element of {1;2; : : : ;N} is

independently chosen to be in A with probability p, then what is the expected size of ∣A ⋅A∣?

Generally, there are many similarities with the above section where we worked in ZN . Before we dig

into the detail, let’s �rst do simulation as always and see what we will get. The range of the product

always lies in the range {1;2; : : : ;N2} so let’s just divide the size of simulated A ⋅A by N2 to normalize

the graph as it is unclear from �rst glance what the maximum size will be. The simulation is done for

N = 20;50;100;250;500;1000 and the result is given in Figure 7.

First, we could see that the ratio is not going to 1. This should be expected as even if all the (�;�)
pair gives us distinct product irrespective of order, we should only expect the �nal size to be N(N+1)

2
.

But even as p approaches 1, this ratio is still lower than 0:5 which suggests that there are some number

in the range of [1;N2] that could never appear in A ⋅A. A quick thought will reveal that the prime

numbers in the range (N;N2] will not be in the range. Also, numbers in the same range with a prime

divisor that is bigger than N will also not appear in A ⋅A. An interesting fact is that the higher N is,

the lower the proportion is.
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Figure 7: Relationship between p and ∣A ⋅A∣

Now we can approach this problem analytically, for simplicity, we again de�ne the corresponding

divisor counting function

De�nition 5 (Divisor Counting Function in Z). Let x ∈ {1; : : : ;N2}, de�ne D(x) to be the number of

(�;�) pair where �;�; ∈ {1; : : : ;N} × {1; : : : ;N}, � ≤ � and � ⋅ � = x. This is essentially the number of

pairs of divisors of x disregarding the order

Note that there is no need to de�ne the square root counting function anymore since in Z, a number

will either not be a perfect square or it has a unique positive square root, i.e. the square root counting

formula is either 0 and 1.

Theorem 6. Let A ⊆ {1; : : : ;N2} be a randomly chosen subset where each element of {1; : : : ;N2} is

independently chosen to be in A with probability p, then

E[∣A ⋅A∣] =
N2

∑
i=1;i not square

1 − (1 − p2)D(i) +
N2

∑
i=1;i is square

1 − (1 − p)(1 − p2)D(i)−1

Proof.

The proof is essentially the same as the proof of Theorem 4 so I will follow the same logic and be

concise

Change the range we are summing, we have

E[∣A ⋅A∣] = E
⎡⎢⎢⎢⎢⎣

N2

∑
i=1

1A⋅A(i)
⎤⎥⎥⎥⎥⎦
=
N2

∑
i=1



If i is not a perfect square, then its probability of being in A ⋅A is 1 − (1 − p2)D(i) and if it is a perfect

square, then its probability of being in A ⋅A is 1 − (1 − p)(1 − p2)D(i)−1

Therefore, splitting into two cases, we have

E[∣A ⋅A∣] =
N2

∑
i=1;i not square

1 − (1 − p2)D(i) +
N2

∑
i=1;i is square

1 − (1 − p)(1 − p2)D(i)−1

Again, we may face the problem of 00 when p = 1 and as before, we de�ne it to be 1

We could approach similarly as in the above section and obtain a cleaner lower bound

Theorem 7. Let A ⊆ {1; : : : ;N2} be a randomly chosen subset where each element of {1; : : : ;N2} is

independently chosen to be in A with probability p ∈ (0;1), then

E[∣A ⋅A∣] ≥ p2N(N + 1)
2

− p4 o(N �) − 1

4
N(N + 1)

where o(N �) means that in little o notation, this quantity is o(N �) for all � > 0, i.e. it is \sub-

polynomial"

Proof.

Again, the proof will be similar to that of theorem 5.

Since p ∈ (0;1), we have

p > p2

1 − p < 1 − p2

(1 − p)(1 − p2)D(i)−1 ≤ (1 − p2)(1 − p2)D(i)−1

1 − (1 − p)(1 − p2)D(i)−1 ≥ 1 − (1 − p2)(1 − p2)D(i)−1

1 − (1 − p)(1 − p2)D(i)−1 ≥ 1 − (1 − p2)D(i)

So we can merge the two sums in Theorem 6 and get

E[∣A ⋅A∣] ≥
N2

∑
i=1;i not square

1 − (1 − p2)D(i) +
N2

∑
i=1;i is square

1 − (1 − p2)D(i) =
N2

∑
i=1

1 − (1 − p2)D(i)

I claim that in this setting, we still have ∑N2

i=1D(i) = N(N+1)

2
and this is proved in appendix as lemma

7

Then we again use Taylor theorem on f(x) = (1 − x)D(i) and get

E[∣A ⋅A∣] ≥
N2

∑
i=1

1 − 1 +D(i)p2 − D(i)(D(i) − 1)(1 − �)2

2
p4

=
N2

∑
i=1

D(i)p2 − D(i)(D(i) − 1)(1 − �)2

2
p4

≥
N2

∑
i=1

D(i)p2 − D(i)(D(i) − 1)
2

p4

= p2N(N + 1)
2

− p4

2

N2

∑
i=1

D(i)(D(i) − 1)
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We still want an estimate of maxi∈{1;:::;N}D(i) to pull one of the D(i) out.

It is shown in Apostol’s textbook [13] that the number of divisor �(n) is o(N �) so we should investigate

the relationship between the number of divisors �(n) and our D(i)
First note that D(i) is counting pairs of divisors regardless of order so it will be at most be �(n)

2

Moreover, we are restricting our attention to divisor that is smaller than N so this will further reduce

D(i) by some unknown quantity so it is safe to use �(n)

2
as our upper bound for D(i)

Since little o notation doesn’t care constant, we could directly write the upper bound of D(i) as o(N �)
It is worth noticing that when plugging in the bound, we can’t pull out the D(i) as we did before since

∑N2

i=1D(i) − 1 will then be a negative number

So we pull out the D(i) − 1 instead and get

[∣A ⋅A∣] ≥ p2N(N + 1)
2

− p4

2

N2

∑
i=1

D(i)(D(i) − 1)

≥ p2N(N + 1)
2

− p4

2
max

i∈{1;:::;N2}
(D(i) − 1)

N2

∑
i=1

D(i)

= p2N(N + 1)
2

− p4

2
(o(N �) − 1)N(N + 1)

2

It will be harder to visualize the result due to the fact that the little o notation is not a very precise no-

tation. The bound on �(n) is more precisely calculated by Wigert[14] to be lim supn→∞
log�(n)

logn/ log logn
=

log 2. This means that the maximum of �(n) is on the order of e
log(2) log(n)
log(log(n)) . As argued above, our

upper bound for D(n) is �(n)

2
so I will substitute 1

2
e

log(2) log(n)

�log(log(nlog (n)



Figure 8: Comparison of simulation and analytical lower bound
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6 Appendix

6.1 Proof of Lemmas

Lemma 1. Suppose N



However, since i is odd and N is even, the RHS is always odd but the LHS is even so neither could

happen

So there are no u s.t. u + u = i mod N

Now I want to show that there are N
2

distinct pairs of (u; v) s.t. u + v = i mod N

Note that for a give u, there is a unique v s.t. u + v = i mod N since ZN is a group under addition

and we just showed that there is no pair where v = u
So there will be N pairs of (u; v) that satisfy the condition u + v = i mod N but u ≠ v
But our uniqueness de�nition allows switching the order of u; v so we have to divide this number by 2

and we have that there are N
2

distinct pairs

Then, we consider the case i is even

Our previous proof have shown that there are a maximum of 2 elements where u + u = i mod N since

either 2u = i or 2u = i +N
In the current case, both i

2
and i+N

2
are in ZN so we are done showing that there are exactly 2 u where

u + u = i mod N

Finally, I want to show that there are N
2

− 1 distinct pairs of (u; v) s.t. u + v = i mod N

Note that for a give u, there is a unique v s.t. u + v = i mod N since ZN is a group under addition

and we just showed that there are 2 pair where v = u
So there will be N − 2 pairs of (u; v) that satisfy the condition u + v = i mod N but u ≠ v
But our uniqueness de�nition allows switching the order of u; v so we have to divide this number by 2

and we have that there are N
2

− 1 distinct pairs

Lemma 3. If N is even, then

1. If i ∈ [1;N] and i is odd, then there are exactly i−1
2

distinct (u; v) pairs s.t. (u; v) ∈ [1;N]×[1;N],
u + v = i and u ≠ v and no u ∈ [1;N] s.t. u + u = i

2. If i ∈ [1;N] and i is even, then there are exactly i
2

− 1 distinct (u; v) pairs s.t. (u; v) ∈ [1;N] ×
[1;N], u + v = i and u ≠ v and 1 u ∈ [1;N] s.t. u + u = i

3. If i ∈ [N + 1;2N] and i is odd, then there are exactly i−1
2

− (i −N − 1) distinct (u; v) pairs s.t.

(u; v) ∈ [1;N] × [1;N], u + v = i and u ≠ v and no u ∈ [1;N] s.t. u + u = i

4. If i ∈ [N + 1;2N] and i is even, then there are exactly i
2

− 1 − (i −N − 1) distinct (u; v) pairs s.t.

(u; v) ∈ [1;N] × [1;N], u + v = i and u ≠ v and 1 u ∈ [1;N] s.t. u + u = i
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Proof.

This is a simple book keeping exercise

1. If i ∈ [1;N] and i is odd, then clearly there is no u where u + u = i since 2u has to be even

Since we are considering  Td  0 Td [(])]TJ/F19 3llf 8.u



N being odd prime

This shows that e(i) ≥ 2

Now suppose y is another solution, i.e. y2 = i mod N

Then x2 − y2 = 0 mod N

Since ZN is abelian, we have (x − y)(x + y) = 0 mod N

Since N is odd prime, we know that there is no zero divisors so either x − y = 0 mod N or x + y = 0

mod N

In the �rst case, we have x = y and in the second case we have x = −y so y is already counted

So there will be only 2 solutions which is x and −x

Lemma 5. Consider the divisor counting Function d(x) in the setting of ZN , then ∑N−1
i=0 d(i) = N(N+1)

2

Proof.

Note that ∑N−1
i=0 d(i) is essentially summing up the number of divisors of all the elements in ZN

All pair (�;�) where �;� ∈ ZN and � ≤ �, we will have � ⋅ � ∈ ZN so it will be counted exactly once

when we sum up all the divisor pairs

So ∑N−1
i=0 d(i) is essentially the number of (�;�) pairs where �;� ∈ ZN and � ≤ �

This is a simple combinatoric problem and the answer is N(N+1)

2
so we are done

Lemma 6. In the setting of ZN where N is an odd prime and d(x) is the divisor counting function,

then d(0) = N and maxi∈ZN ;i≠0 d(i))where



Lemma 7. Consider the divisor counting Function D(x) in the setting of Z, then ∑N2

i=1D(i) = N(N+1)

2

Proof.

Similar to lemma 5, ∑N2

i=1D(i) is essentially summing up the number of pairs of (�;�) where �;� ∈
{1; : : : ;N}, � ≤ � and �� ≤ N2

This is again a simple combinatoric problem and the answer is N(N+1)

2
so we are done

6.2 Simulation Code

All the simulation done in this thesis is written in Python. In all four cases, the code has high similarity

besides from the operator used (plus or times) and the setting (whether need to calculate mod N) so I

only included the A ⋅A in ZN as an example. This is a paralleled version that speeds up the simulation

by running the program across cpu cores simultaneously.

# -*- coding: utf-8 -*-

"""

Created on Sat Apr 3 14:50:59 2021

@author: danny

"""

import numpy as np

from scipy.spatial.distance import pdist

import pandas as pd

from matplotlib import pyplot as plt

from multiprocessing import cpu_count

from multiprocessing import Pool

import os

class Function:

def __init__(self, N):

self.N = N

def get_size(self, p):

result = []

for i in range(100):

chosen_index = np.random.binomial(1, p, self.N)

A = np.unique(chosen_index * range(1, self.N+1)) - 1
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A = A[A>=0]

AplusA = np.unique(pdist(A.reshape((-1,1)),metric = lambda x,y: x*y)) % self.N

AplusA = np.append(AplusA, A**2 % self.N)

AplusA = np.unique(AplusA)

result.append(len(AplusA))

print(p)

return np.mean(result)

def main():

N_list = [19,20,47,50,97,100,241,250,499,500]

plt.figure()

for N in N_list:

p_list = np.linspace(0,1,50)

if not os.path.isfile("Data/AtimesA_"+str(N)+"_result.csv"):

function = Function(N)1,50)
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