TWO GEOMETRIC COMBINATORIAL PROBLEMS IN VECTOR SPACES OVER FINITE FIELDS

EMMETT WYMAN

Abstract. First, we show that the number of ordered right triangles with vertices in a subset E of the vector space \mathbb{F}_q^2 over the finite field \mathbb{F}

Often, we will ask how large a subset E of \mathbb{F}_q^d

TWO GEOMETRIC COMBINATORIAL PROBLEMS IN VECTOR SPACES OVER FINITE FIELD3

Proposition 2. (Plancherel's Formula) Let $f, g : \mathbb{F}_q^d \subset \mathbb{C}$. Then

$$\hat{f}(m)\overline{\hat{g}(m)} = q^{-d}$$
 $f(x)\overline{g(x)}.$
 $f(x)g(x)$

Proof.

$$\hat{f}(m)\overline{\hat{g}(m)} = q^{-2d} \qquad f(y) \quad (-x \cdot m \, \mathbb{F}_q^d \, x \, \mathbb{F}_q^d)$$

for $z \in E$. This yields at most /E/2 combinations of values for y, z, and z. Then

where $// < 2^{1/2}$. It follows from direct computation that the first term exceeds the second if $|E| > 2^{\frac{1}{3}}q^{\frac{5}{3}}$. Now if $q = 3 \pmod{4}$, Lemma 2 instead yields

$$q(q-1)/E/$$
 1 $q(q-1)/E^{\beta}(q+2) = (q^3 + q^2 - 2q)/E^{\beta}$.
 $y,z,y,z \in E$
 $y+z=y+z$
 $y\cdot z=y\cdot z$

Hence the second term is bounded by $q^{\frac{3}{2}}/E/^{\frac{3}{2}}(1+o(1))$. Hence the first term exceeds the second when $q^{-1}/E/^3>q^{\frac{3}{2}}/E/^{\frac{3}{2}}(1+o(1))$, i.e. when

$$|E| > q^{\frac{5}{3}}(1 + o(1)).$$

This concludes the proof of Theorem 2.

4. Discrepancies

4.1. **Statement of Results**. A hyperplane in \mathbb{F}_q^{ld} is a set of the form $\{x \in \mathbb{F}_q^d : x \cdot m = t\}$

To show that the map is onto, we recall that every $H \mapsto G$ can be written as $\{x \mid F_q^d: x \cdot m = s\}$ for some $s \mid F_q$ and nonzero m in F_q^d . Then there exist unique $V \mid V(F_q^d)$ and $\mid F_q \mid \{0\}$ such that m = V. Then we write

$$\{x \quad \mathsf{F}_q^d : x \cdot m = s\} = \{x \quad \mathsf{F}_q^d : x \cdot v = s\}$$

$$= \{x \quad \mathsf{F}_q^d : x \cdot v = {}^{-1}s\}$$

$$= H_{v, -1s}.$$

TWO GEOMETRIC COMBINATORIAL PROBLEMS IN VECTOR SPACES OVER FINITE FIELDS

Proof. We have by the above proposition,

Since $V(\mathbb{F}_q^d)$ is a direction set, we have

$$= q^{2d-1} / \hat{E}(m) / ^2 + q^{-1} / V(\mathbb{F}_q^d) / |E|^2$$

References

- [1] J. Beck. On the lattice property of the plane and some problems of Dirac, Motzkin, and Erdos in combinatorial geometry. Combinatorica 3 (1983), 281–297.
- [2] J. Pach, and P. Agarwal *Combinatorial geometry* Wiley-Interscience Series in Discrete Mathematics and O-0.2s