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Abstract

This paper is a discussion of the development of the Hardy Inequality. We detail the

inequality in both the discrete and continuous cases, as well as notable work, by Hardy

and other mathematicians at the time, that contributed to its development. Much of the

content draws upon an article from The American Mathematical Monthly by Alois Kufner,

Lech Maligranda and Lars-Erik Persson [8].

1 Introduction



1.1 Lebesgue Spaces

Before going on to discuss these inequalities, we will �rst brie
y discuss the Lebesgue SpacesL p

and `p and related notation and terminology. We will be using the notation used in [1].

Given a measure space (X; S; � ) and 0 < p � 1 , the Lebesgue SpaceL p, or L p(X; S; � ), is the

set of S-measurable functionsf : X �! F such that jj f jjp < 1 , where jj f jjp is the p-norm of f ,

and is de�ned as follows:

ˆ if 0 < p < 1 : jj f jjp =
� R

jf jpd�
� 1

p

ˆ jj f jj1 = inf f t > 0 : � (f x 2 X : jf (x)j > t g) = 0 g.

Moreover, when the measure� is the counting measure onZ+ , and a = ( a1; a2; :::) is a

sequence inF and 0 < p < 1 , then

jjajjp =

 
1X

n =1

jan jp
! 1

p

; and jjajj1 = supfj an j : k 2 Z+ g

and we write `p in place of L p(� ).

If we restrict p to the interval [1 ; 1 ] and write that Z (� ) be the set ofS-measurable functions

that vanish except on a set of order zero, and denote the quotient spaceL p(� )=Z (� ) as L p(� ),

we construct a Banach space ofp-integrable functions. In L p we simply say that the p-norm of

a function f , jj f jjp, is equal to the norm of its representative inL p. In the case of the counting

measure,L p(� ) = L p(� ) = `p(� ) as, with respect to this measure, the only set of measure zero

is the empty set.

2 Motivation and Prior Results

Before detailing Hardy's proofs of the main results, we will address Hardy's motivation for

beginning work toward these results, important theorems that will be of use to a reader of this

paper, and Hardy's related results prior to his proof of his continuous and discrete inequalities.

2.1 Motivation: The Hilbert Inequality

In the article by Kufner, Maligranda, and Persson [8], they write that "it seems completely clear

that Hardy's original motivation when he began the research that culminated in his discovery

of the inequalities [(1) and (2)] was to prove (the weak form of) the Hilbert inequality." This

inequality (and variants of it) pertains to sequencesf am gm � 1 and f bn gm � 1 of nonnegative real

numbers such that
P 1

m =1 a2
m < 1 and

P 1
n =1 b2

n < 1 , or in the notation we introduced earlier:

a; b2 `2(� ). In this context, we have the following variants of the Hilbert Inequality:
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ˆ Weak form: the double series

1X

n =1

1X

m =1

am bn

m + n
converges (3)

ˆ Typical (Strong) form: the inequality

1X

n =1

1X

m =1

am bn

m + n
� �

 
1X

m =1

a2
m

! 1
2

 
1X

n =1

b2
n

! 1
2

(4)

holds, and � is a sharp constant.



2.2.3 H•older's Inequality

If ( X; S; � ) is a measure space, 1� p � 1 , and f; h : X �! F are S-measurable, then

jj fh jj1 � jj f jjp jjhjjp0 (8)

2.2.4 Minkowski's Inequality

If ( X; S; � ) is a measure space, 1� p � 1 , and f; h 2 L p(� ) then

jj f



Theorem 2.4. let a > 0, f (x); g(x) be non-negative and integrable on(a; 1 ), and denoteF (x) =
Rx

a f (t)dt, G(x) =
Rx

a g(t)dt The following hypotheses are equivalent:



a proof of the discrete inequality in the following form [8]:

Theorem 2.8 (Proved by Landau). If p > 1, an � 0,
P

ax
n is convergent, then

NX

n =1

 
1
n

nX

k=1

ak

! p

�
�

p
p � 1

� p NX

n =1

ap
n

and the constant
�

p
p� 1

� p
is sharp whenN = 1 .

Additionally, in another letter, Landau drew Hardy's attention to the fact that, in his 1920

paper, Hardy had remarked that (p=(p � 1))p was the best constant in the continuous case,

without providing a proof. This exchange was addressed in Hardy's 1925 paper alongside such a

proof.

3 Proof of the Hardy Inequality

We will now present Hardy's proofs of (1) and (2) as they were originally presented in his 1925

paper [7], albeit with slight modi�cation for notational simplicity.

3.1 Continuous Case

Theorem 3.1. Suppose thatf (x) � 0, p > 1, that f Lebesgue integrable over any �nite interval

(0; X ), and

F (x) =
Z x

0
f (t)dt;

and that f 2 L p(R+ ). Then

Z 1

0

�
F (x)

x

� p

dx �
�

p
p � 1

� p Z 1

0
f (x)pdx:

Proof. By applying integration by parts and making use of the chain rule
�

d
dx F (x)p = pF(x)p� 1f (x)

�
:

Z X

�

�
F (x)

x

� p

dx = �
1

p � 1

Z X

�
F (x)p d

dx
(x1� p)dx

=
� 1� p

p � 1
F (� )p �

X 1� p

p � 1
F (X )p +

1
p � 1

Z X

�
x1� p d

dx
(F (x)p)dx

=
� 1� p

p � 1
F (� )p �

X 1� p

p � 1
F (X )p +

p
p � 1

Z X

�
x1� pF (x)p� 1f (x)dx

�
� 1� p

p � 1
F (� )p +

p
p � 1

Z X

�
x1� pF (x)p� 1f (x)dx:
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When � �! 0, by H•older's Inequality (8), we have that

F (� )p =
� Z �

0
f (t)dt

� p

�
Z �

0
f (t)pdt

� Z �

0
dt

� p� 1

= o(� p� 1):

For � > 0; 9� � so that 8� � � � :

F (� )p < (p � 1)� jj f jjp
p� p� 1:

Also,

Z X

�

F (x)
x

p� 1

f (x)dx �

 Z X

�
f (x)pdx

! 1
p

 Z X

�

F (x)
x

p

dx

! 1
p 0

� jj f jjp
p

 Z X

�

F (x)
x

p

dx

! 1
p 0

Denoting W =
� RX

�
F (x )

x

p
dx

�
, this yields that:

W < � jj f jjp
p +

p
p � 1

jj f jjpW 1=p0

or, equivalently, �
W

jj f jjp
p

� p

�
p

p � 1

�
W

Wp�0



Theorem 3.2. The inequality (2) is strict ( (p=(p � 1))p is the best possible constant).

Proof. To show that this is the best possible constant, we proceed as follows:

let � > 0; f =

8
<

:
0 0 � x < 1

x � ( � + � ) 1 < x
;

where � = 1=p; 0 < � < 1
2 (1 � � ) < 1 � �





If � n � 1 � x � � n , then

F (x)
x

=
� 1a1 + ::: + � n � 1an � 1 + ( x � � n � 1)an

x
;

which will decrease monotonically fromAn � 1=� n � 1 to An =� n as x increases from �n � 1 to � n .

Thus
F (x)

x
�

An

� n
when � n � 1 � x < � n :

Combining these observations with Theorem 3.1 and the earlier simpli�cations that we made

yields the desired result:

NX

n =1

� n

�
An

� n

� p

�
Z 1

0

�
F (x)

x

� p

�
�

p
p � 1

� p Z 1

0
f (x)pdx =

�
p

p � 1

� NX

n =1

� n ap
n

4 Further Results

Having proven our main result, we will now proceed to explore alternative proofs and further

results.

4.1 P�olya's Proof

In that very same article, Hardy also shared an alternative proof of Theorem 3.1 which had been

pointed out to him by George P�olya in their correspondence. This proof, while beginning in

the same way, makes a few notable simpli�cations and thus avoids some of the more technical

arguments in Hardy's proof. We present this alternative proof here:

Proof. Suppose that 0< � < � < X: Recall, from Hardy's proof, that:

Z X

�

�
F (x)

x

� p

dx �
� 1� p

p � 1
F (� )p +

p
p � 1

Z X

�
x1� pF (x)p� 1f (x)dx

By taking this inequality and replacing F (x) with F (x) � F (� ) and � with � , dropping the �rst

term (which is non-negative), and applying H•older's inequality (8) in the same way we do in

Hardy's proof, this yields:

Z X

�

�
F (x) � F (� )

x

� p

dx �
p

p � 1

Z X

�

�
F (x) � F (� )

x

� p� 1

f (x)dx ��

p

p � 1

�
Z X

�
f (x)p



As f (x) is non-negative, F (x) will be monotonically increasing. Thus, F (x) � F (� ) increases

monotonically to F (x) as � �! 0. Hence:

Z X

�

�
F (x)

x

� p

dx �
�

p
p � 1

� p Z 1

0
f (x)pdx;

which proves the theorem, as� and X are arbitrary and we can apply this inequality for � �! 0

and X �! 1 .

4.2 The Hardy Operator

One consequence of Hardy's Inequality, is that the discrete Hardy operatorh and the continuous

Hardy operator H , de�ned by:

h(an ) =

(
1
n

nX

k=1

ak

)

; Hf (x) =
1
x

Z x

0
f (t)dt;

map the spaceslp and L p (p > 1) into themselves, respectively. Moreover, each of these operators

have norm p0 = p
p� 1 .

Proof. First, we recall that L p and lp are Banach spaces. The norm of a linear map,T between

Banach spacesV and W is given by jjT jj = supfjj T f jjW : f 2 V and jj f jjV � 1g. Rephrasing

Hardy's inequality in terms of the lp and L p norms and the continuous and discrete Hardy

operators yields:

jjh(f an g)jjp
l p

�
�

p
p � 1

� p

jjajjp
l p

jjHf (x)jjp
L p

�
�

p
p � 1

� p

jj f (x)jjp
L p

:

By exponentiation of both equations by 1=p, we arrive at:

jjh(f an g)jj l p �
p

p � 1
jjajj l p

jjHf (x)jjL p �
p

p � 1
jj f (x)jjL p ;

where the constantp0 = p
p� 1 is the best constant (for any sequence or function). Paying special

attention to the case of functions in L p whose norms are less than or equal to 1, by the de�nition

of the norm of a linear map and these inequalities, we immediately arrive at the desired result.
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4.3 Ingham's Proof of The Hardy Inequality

By making use of the Hardy operator and Minkowski's Inequality (9), Albert Ingham was able

to provide the following, much simpler, proof [8]:

Proof.



we proceed by denotingap
n as bn , and take the limit as p �! 1 . The right hand side becomes

lim
p�! 1

�
p

p � 1

� p NX

n =1

� n bn = lim
p�! 1

�
1 +

1
p � 1

� p NX

n =1

� n bn = e
NX

n =1

� n bn ;

and on the left hand side, we will address each term of the sum,

lim
p�! 1

 
� 1b1=p

1 + ::: + � n b1=p
n

� 1 + ::: + � n

! p

;

separately. For each such term, we can rewrite it as

lim
p�! 1

 
nX

i =1

wi b
1=p
i

! p

;

where wi = � i =� n and
P n

i =1 wi = 1. Letting k = 1=p, we can proceed as follows, making use of

the fact that exp is a continuous function on R:

lim
p�! 1

 
nX

i =1

wi b
1=p
i

! p

= lim
k �! 0

 
nX

i =1

wi bk



Returning to our original notation, this can be written as:

lim
p�! 1

 
� 1b1=p

1 + ::: + � n b1=p
n

� 1 + ::: + � n

! p

= ( b� 1
1 :::b� n

n )1=� n :

Combined with our previous result when taking the limit of the right hand side of Hardy's

inequality, we arrive at our desired result:

NX

n =1

� n (b� 1
1 :::b� n

n )1=� n � e
NX

n =1n



and the constants( p
p� 1 )p and pp are the best such constants in each case respectively. Moreover,

each of these inequalities may be deduced from the other.
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