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1 Contingency Tables and Markov Chains

The problem motivating this work is that of sampling contingency tables. A
contingency tableA is a matrix with nonnegative integer entries whose rows
and columns sum to some speci�ed values. In other words, given vectors
r = ( r i )m

i =1 and c = ( cj )n
j =1 of positive integers, a contingency table with row

sumsr and column sumsc is someA 2 Matm� n (N) such that

r i =
nX

t=1

A i;t and cj =
mX

t=1

A t;j (1)

for eachi 2 [m] and j 2 [n] (we use the notation [k] = f 1; : : : ; kg). Notice that
it must be that

P
r i =

P
cj for such a contingency table to possibly exist. We



and call P the Markov chain's transition matrix . It can be easily seen that for
any t 2 N,

Pr(X t = b j X 0 = a) = P t (a; b): (4)

We de�ne the period of state i to be pi := gcdf t j P t (i; i ) > 0g. We then say
that a Markov chain is aperiodic if there exists a statei such that pi = 1. We
say a Markov chain isirreducible or connectedif for every two statesi; j 2 
,
there exists somet 2 N such that P t (i; j ) > 0. A Markov chain that is both
aperiodic and irreducible is said to beergodic.

For any probability distribution � t over the elements of 
, we may think
of � t+1 = � tP as the distribution acquired after performing a transition of
the Markov chain on � t . We say that a distribution � on 
 is a stationary
distribution if � = �P . With these de�nitions, we can state a fundamental
result.

Theorem 1. An ergodic Markov chain has a unique stationary distribution
� ; moreover, the Markov chain tends to� in the sense thatP t (a; b) ! � b as
t ! 1 , for all a; b2 
 .

This result implies that an ergodic Markov chain can be used to sample
elements from a distribution close to� over 
. We can start with any element
a 2 
 and transition to other elements according to the rules de�ned by the
Markov chain. How close the ending distribution is to� is dependent ont,
the number of transitions and the transition matrix. In general, the more
transitions we perform, the closer the distribution gets to� . Thus, a Markov
chain is useful for sampling if its stationary distribution matches the desired
distribution over 
 we wish to sample from and if it can quickly converge to
the stationary distribution.

One useful result in computing the stationary distribution of a Markov
chain is the following:

Theorem 2. SupposeP is the transition matrix of a Markov chain. If the
function � 0 : 
 ! [0; 1] satis�es

� 0 )





The Markov chain then transitions fromA to A0 if the entries in A0 are non-
negative. Although it is easy to describe, researchers have had a di�cult time
analyzing the mixing time of this Markov chain.

In a paper from 2017, Kayibi et al. [12] attempt to show that this Markov
chain mixes fast by using a canonical path argument. However, we managed to
�nd a counterexample to one of the results used in the argument. Speci�cally,
the paper states the following claim:

Proposition 3 (Corollary 8 from [12]). Let N be the number of allm � n
contingency tables of �xed row and column sums. The number of contingency
tables havingk �xed cells (in lexicographic ordering) is at mostN

mn � k
mn .

A counterexample to this proposition can be seen as follows: �xn 2 Z+

and let r = c = (1 ; 1; : : : ; 1). Then the set ofn � n contingency tables with
these row and column sums is exactly the set of tables acquired by permuting
the rows of then � n identity matrix. So in this case,N = n!. The set of these
contingency tables with the �rst cell �xed to be 1 is the set of tables acquired
by permuting the last n �



2 Young Tableaux

We now turn our attention to the study of Young tableaux. Young tableaux,
as we illustrate below, are innately connected to contingency tables, so study-
ing how to sample these objects may provide us with a method of sampling
contingency tables.

A Young diagram (sometimes called a Ferrers diagram) of shape� =
(� 1; � 2; : : : ; � k) is an array of k left-justi�ed rows of cells such that row i has
length � i and � 1 � � 2 � � � � � � k � 1. A standard Young tableauof shape�
is a Young diagram �lled with the integers from [n] wheren =

P r
i =1 � i such

that the integers are strictly increasing both from left to right within each
row and from top to bottom within each column (so each integer from [n]
appears precisely once). Asemistandard Young tableauis a generalization in
which the integers from [n] are allowed to appear more than once, and the row
condition is relaxed to require that integers are only weakly increasing from
left to right. Such a tableau is said to have weight� = ( � 1; : : : ; � n ) if each
integer i appears� i times. A standard Young tableau could be considered a
semistandard Young tableau with weight� = (1 ; 1; : : : ; 1). The following from
left to right are examples of a Young diagram, a standard Young tableau, and
a semistandard Young tableau, each with shape� = (4 ; 4; 2; 1):

1 2 5 10
3 7 8 11
4 9
6

1 1



c = ( c1; : : : ; cn



a random Young tableau from 
 by randomly selecting the location of the
largest entry and recursively �lling out the rest of the tableau.

A corner of a Young diagram is a cell at the end of both its row and its
column. Let c be the number of corners of� , and let r t be the row on which
the t th corner lies. Let� t = ( � t

j )
k
j =1 be the shape derived from� by removing

the t th corner, so

� t
j =

(
� j if j 6= r t

� j � 1 if j = r t
: (14)

Additionally, let � 0 = ( � 0
i )

n
i =1 be the weight derived from� by removing one

count of the entry a, so

� 0
i =

(
� i if i 6= a

� i � 1 if i = a
: (15)

Sincea is the largest entry in � , it must be located on a corner of any Young
tableau with weight � . Given the t th corner of � , we can describe the proba-
bility that a is located at that corner of a Young tableau uniformly i.d9t(�i



Plancherel measure (for example, see [11]) and then sampling a Young tableau
with shape � . However, this special case of sampling contingency tables, as
discussed in Section 1.1, is not particularly interesting, as the set of contin-



In 1979, Greene, Nijenhuis, and Wilf [7] provided an alternative proba-
bilistic proof of the hook length formula. Their goal in reproving the result
was to establish a better combinatorial explanation of why the hooks appear
in the formula, as the proof provided by Frame, Robinson, and Thrall allows
for no intuitive explanation. A convenient product of their new proof is that
it gives an alternative and more e�cient method of sampling standard Young
tableaux, described as follows.

Given a Young diagram of shape� with size n, randomly select a cell (i; j )
with uniform probability 1 =n. Then, randomly select a new cell (i 0; j 0) from
H � (i; j ) n f (i; j )g with uniform probability 1 =(h� (i; j ) � 1). Select another cell
from H � (i50



In the following discussion, it will be useful to prove the following lemma
about swaps that can be performed on corners.

Lemma 5. Let T 2 
 . If � 2 [n � 1] is located at a corner ofT, then
T[�; � + 1] is a valid Young tableau.

Proof. Consider the two spots ofT local to both � and � +1 which, in general,
look like:

. . . � 1
...

� 2 �
...

. . . 
 1
...


 2 � +1 
 3

... 
 4
. . .

Because� is at a corner, the row and column conditions ensure that these two
diagrams can only overlap at� 1 = 
 2 or � 2 = 
 1.

Now, if � and �



X 0
0 = X 0[�; � + 1][ � + 1; � + 2] � � � [n � 1; n] which hasn at the end of rowrn .

Now X 0
0 and Y0 match in the location of n.

Now, removen from both X 0
0 andY0, giving us two smaller Young tablueaux

of sizen � 1 with shape� 0 = ( � 0
r )

k
r =1 with

� 0
r =

(
� r if r 6= rn

� r � 1 if r = rn
: (19)

Call these tableauxX 1 and Y1. Now we can use the same process detailed
above to transition X 1 to a Young tableauX 0

1 that matchesY1 in the location
of n� 1. After removingn� 1 from both X 0

1 and Y1, we get two Young tableaux,
X 2 and Y2, of sizen � 2. We can repeat this processn � 2 more times until the
tableau derived fromX 0 matchesY0. Each swap that we perform has a positive
probability of occurring in the Markov chain, so we haveP t (X 0; Y0) > 0, where
t is the total number of swaps.

It follows easily that our Markov chain is ergodic.

Proposition 7. MC swap is ergodic.

Proof. First note that for any X 2 
, P(X; X ) � Pr( i = j ) = 1 =n. Thus, the
periodicity of X is 1, so the Markov chain is aperiodic. With Proposition 6,
this implies that the Markov chain is ergodic.

Now, by Theorem 1, we can conclude that this Markov chain has some
stationary distribution � . Furthermore, just as we desire, the stationary dis-
tribution is the uniform distribution as shown here:

Proposition 8. The stationary distribution � of MC swap is uniform on 
 .

Proof. Take any two distinct tableaux X; Y 2 
 such that Y di�ers from X
by a single swap, i.e. there exist distinct�; � 2 [n] such that X [�; � ] = Y.
Then see that P(X; Y ) = Pr( f i; j g = f �; � g) = 2 =n2, and by symmetry
P(Y; X) = 2 =n2. For all other pairs X; Y that do not di�er by a single swap
(either X = Y, or P(X; Y ) = 0), we also haveP(X; Y ) = P(Y; X). Thus, P
is symmetric.

Let � 0 be the uniform distribution on 
. Then for any x; y 2 
, we get

� 0(x)P(x; y) = � 0(y)P(y; x): (20)

By Theorem 2, we know that� 0 is a stationary distribution for our Markov
chain. Since the chain is ergodic, we know by Theorem 1 that the stationary
distribution is unique. Thus, � = � 0 is the uniform distribution on 
.
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So we now know that we can useMC swap to sample uniformly from the
set of all standard Young tableaux of some �xed shape. Now we would like to
bound the mixing time of this Markov chain. There are two primary methods
to bound the mixing time of a Markov chain, one which uses \couplings" and
one which uses \canonical paths."

3.3 Coupling for MC swap

A Markovian coupling for a given Markov chain with space 
 and transition
matrix P is a Markov chain (X t ; Yt ) on 
 � 
 with the following transition
probabilities:

Pr(X t+1 = a0 j X t = a; Yt = b) = P(a; a0);

Pr(Yt+1 = b0 j X t = a; Yt = b) = P(b; b0):
(21)

The coupling's transition matrix is often denotedP̂. Essentially, it is a pair
of two Markov chains run in parallel such that each individual chain looks like
the Markov chain de�ned by P but which can be dependent on each other.
Using such couplings can often be used to bound the mixing time of a Markov
chain by using the following result often called the \Path Coupling theorem",
�rst found in [2]:

Theorem 9. For some Markov chain on
 with transition matrix P, �x a
coupling (X t ; Yt ). Let G = (
 ; E) be a graph andd : E ! R be a function
that induces distances on
 � 
 . If there exists some� > 0 such that for all
f a; bg 2 E,

E[d(X t+1 ; Yt+1 ) j X t = a; Yt = b] � (1 � � )d(a; b); (22)

then

� (� ) �
1
�

log
�

dmax

�

�
; (23)

wheredmax = maxf d(a; b) j (a; b) 2 
 2g.

[2] adds the remark that we can also get a bound on the mixing time if we
assume the premise but with� = 0, albeit a weaker one.

To investigate whether such a method could be used to bound the mixing
time of MC swap, we construct the graphG = (
 ; E) where E = ff a; bg j
P(a; b) > 0g. The distance function we de�ne onG is the natural one; the
whole of d on 
 2 is induced by letting d(a; b) = 1 for every f a; bg 2 E with
a 6= b.
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Unfortunately, however, we can show that with this de�nition of G and
d, the Path Coupling theorem cannot be used to bound the mixing time of
MC swap. We do this by de�ning a linear program that minimizes, over all pos-
sible couplings, the expected distance between two states after one transition
of the Markov chain. It is de�ned more completely as follows.

Fix some (a; b) 2 E. For every (a0; b0) 2 
 2, let xa0;b0 = P̂((a; b); (a0; b0)) be
a variable to be determined by our linear program. Our transition matrixP̂
must de�ne a coupling, so we must satisfy the constraints in eq. (21). These
constraints are equivalent to

X

b02 


P̂ ((a; b); (a0; b0)) = P(a; a0) for all a0 2 
 ;

X

a02 


P̂ ((a; b); (a0; b0)) = P(b; b0) for all b0 2 
 :
(24)

Translating this into the variables in our linear program, we get the following
constraints:

X

b02 


xa0;b0 = P(a; a0) for all a0 2 
 ;

X

a02 


xa0;b0 = P(b; b0) for all b0 2 
 :
(25)

Because all possible outcomes are represented by the probabilitiesxa0;b0, we
may consider including the constraint

X

a02 


X

b02 


xa0;b0 = 1; (26)

but this is taken care of by the constraints in eq. (25) and the fact thatP is
a transition matrix, as

X

a02 


X

b02 


xa0;b0 =
X

a02 


P(a; a0) = 1 : (27)

The only other constraints we need are those that force our variables to rep-
resent probabilities:

0 � xa0;b0 � 1 for all (a0; b0) 2 
 2: (28)

Note, however, that the constraints listed in eq. (25) automatically provide an
upper bound on the variables, so we do not need to include the upper bound
here; that is, we only need

xa0;b0 � 0 for all (a0; b0) 2 
 2: (29)
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Now, we want to know if there exists a coupling such that the expected
value found in eq. (22) is strictly less thand(a; b) = 1. Thus, we wish to
minimize the following objective function:

E[d(X t ; Yt ) j X t = a; Yt = b] =
X

(a0;b0)2 


d(a0; b0)xa0;b0: (30)



13=18. Thus, the constraints from eq. (25) translate to the following:

xa;a + xb;a + xd;a + xe;a + x f;a + xg;a =
1
18

; (34)

xa;b + xb;b + xd;b + xe;b + x f;b + xg;b =
16
18

; (35)

xa;c + xb;c + xd;c + xe;c + x f;c + xg;c =
1
18

; (36)

xa;a + xa;b + xa;c =
13
18

; (37)

xb;a + xb;b + xb;c =
1
18

; (38)

xd;a + xd;b + xd;c =
1
18

; (39)

xe;a + xe;b + xe;c =
1
18

; (40)

x f;a + x f;b + x f;c =
1
18

; (41)

xg;a + xg;b + xg;c =
1
18

: (42)

Additionally, we still have the constraints x i;j � 0 for each variable in consid-
eration. By analyzing the tableaux, we get

d(a; c) = d(d; b) = d(e; b) = d(f; b) = d(g; b) = 2 ; (43)

d(d; c) = d(e; c) = d(g; c) = 3 ; (44)

d(i; i ) = 0, and d(i; j ) = 1 for all other pairs ( i; j ) in consideration. This gives
us the following objective function from eq. (30):

minimize Z = xa;b + 2xa;c + xb;a + xb;c + xd;a + 2xd;b + 3xd;c + xe;a + 2xe;b

+ 3xe;c + x f;a + 2x f;b + x f;c + xg;a + 2xg;b + 3xg;c: (45)

Now that we have the linear program de�ned, we want to show that its
optimum value is strictly larger than d(a; b) = 1, as this implies that the Path
Coupling theorem does not apply. We will do this by considering the dual of
our linear program:

maximize Z 0 =
1
18

y1 +
16
18

y2 +
1
18

y3 +
13
18

y4 +
1
18

y5 +
1
18

y6 +
1
18

y7

+
1
18

y8 +
1
18

y9 (46)
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subject to y1 + y4 � 0 y1 + y7 � 1 (47)

y2 + y4 � 1 y2 + y7 � 2 (48)

y3 + y4 � 2 y3 + y7 � 3 (49)

y1 + y5 � 1 y1 + y8 � 1 (50)

y2 + y5 � 0 y2 + y8 � 2 (51)

y3 + y5 � 1 y3 + y8 � 1 (52)

y1 + y6 � 1 y1 + y9 � 1 (53)

y2 + y6 � 2 y2 + y9 � 2 (54)

y3 + y6 � 3 y3 + y9 � 3 (55)

Now, consider the assignment (yi



(where E = f (u; v) j P(u; v) > 0g) from x to y labeled 
 x;y . Then we let the
congestion of an edge be

Congestion(u; v) =
1

� (u)P(u; v)

X

x;y
(u;v )2 
 x;y

� (x)� (y)j
 x;y j: (56)

We then have the following result:

Theorem 11. Let � = maxf Congestion(u; v) j (u; v) 2 
 2g. Then

� (� ) � 2�
�

2 ln
�

1
�

�
+ ln

�
1

min � (x)

��
: (57)

Thus, if we can describe canonical paths such that we can �nd a polynomial
bound on the maximum congestion of an edge, we can get a polynomial bound
on the mixing time of our Markov chain.

For MC swap, we de�ne canonical paths using the process established in the
proof of Proposition 6. Fix two tableauxu; v 2 
. Locate the position p of n
in v. Starting with w = v, use swaps to increment the number atp in w by
1 repeatedly until n is also located atp for w. Repeat this process forn � 1,
n � 2, etc., until w is identical to v. As justi�ed in the proof of Proposition 6,
each of the intermediate tableaux are valid Young tableaux, so this process
de�nes a canonical path
 u;v from vertex u to vertex v in our graph.

With these paths established, we need to bound the congestion of the
edges of our graph. For a given pair of Young tableauxu; v 2 
, we have the
following:

Congestion(u; v) =
1

� (u)P(u; v)

X

x;y
(u;v )2 
 x;y

� (x)� (y)j
 x;y j (58)

�
1

j
 j

X

x;y
(u;v )2 
 x;y

j
 x;y j (59)

�
n(n + 1)

2j
 j

X

x;y
(u;v )2 
 x;y

1: (60)

Unfortunately, however, we do not currently have a bound on the size of the set
f (x; y) 2 
 2 j (u; v) 2 
 x;y g that yields a polynomial bound on the congestion
of the edge (u; v). We leave this for future work.
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4 Sampling Semistandard Young Tableaux

We now switch to the problem of sampling semistandard Young tableaux.
Recall that the RSK correspondence maps contingency tables to pairs of semi-
standard Young tableaux of the same shape. Thus, this more generalized case
is more interesting to us than the case of sampling standard tableaux. Fur-
thermore, once we �x the row and column sums for our contingency tables,
the weights of the corresponding Young tableaux are determined while their
shapes are not. Thus, our overall goal is to sample pairs of semistandard
Young tableaux with �xed weights and the same, but un�xed, shape.

4.1 Complexity of counting Young tableaux

Because of the strong connection between Kostka numbers (and by extension,
Young tableaux) and other areas of mathematics, a lot of work has gone into
understanding and calculating these coe�cients (for example, see [18]). How-
ever, de�nitive results have remained elusive, possibly due to the complexity
of the problem. In fact, in 2006, Hariharan Narayanan [17] showed that the
problem of computing arbitrary Kostka numbers is #P-complete, meaning
that unless P = NP , there does not exist an algorithm that can compute
these numbers in polynomial time. However, even ifP 6= NP , the question of



example, consider the following Young tableaux:

1 2
3 3
4 5

and 1 3
2 4
3 5

: (61)

These two tableaux both have the same shape and weight, so we would need
to �nd a way of getting from one to the other using swaps. Recall that the
constraints of semistandard Young tableaux are that the rows need to be
weakly increasing while the columns need to be strictly increasing. Therefore,
there are no swaps we can perform on either of these tableaux that yield a valid
Young tableau. Consequently, there is no way of getting from one tableau to
the other using only swaps, and our Markov chain is not connected. Thus, we
must consider a di�erent type of Markov chain in the semistandard case.

4.3 A Markov chain for variable shapes

We now propose a Markov chain to sample from all Young tableaux of a given



1



row, onceb is moved to the second row, the entries located aboveb throughout
the process will never be any larger thana and, hence, will satisfy the column
constraints of a Young tableau. Since all row and column constraints are
satis�ed, each intermediate tableau will be a valid Young tableau. In this way,



considered but not fully explored is that which calculates the total pairwise
di�erence between two tableaux' entries. To de�ne this more rigorously, letX
and Y be two standard Young tableaux with the same shape. Let the entries
of X in lexicographic order be (a1; a2; : : : ; an ) and those ofY be (b1; b2; : : : ; bn ).
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n = Total [ shape ] ;
nv = Length [ y ts ] ;
v e r t i c e s = Range [ nv ] ;
edges = Select [ Subsets


