


1 Introductory background

1.1 Discrete Hausdor� dimension for families of �nite sets
In the literature[9], one of the equivalent ways of de�ning the Hausdor� dimension of a compact set relies on the
computation of the following quantity: the energy integral.

De�nition 1. Given 0 � � � d, the �



(compactness is not even a strictly necessary condition) and relying on measures (which are easy to manipulate),
the Hausdor� dimension has a central role in fractal geometry indicating, roughly speaking, how much space a
set occupies near to each of its points . Its most fundamental de�nition (which is equivalent to De�nition 2[3] and
also explains why it can capture fractal properties of a set and the way it distributes in space) is the following:

De�nition 5. Given a set E , its Hausdor� dimension is

inf f s � 0 : H s (E ) = 0 g = sup f s � 0 : H s (E ) = 1g (7)

where H s (E ) is the Hausdor� measure of E and it is de�ned as

lim
� ! 0

inf

(
1X

i =1

jUi j
s : E � [ 1

i =1 Ui ; jUi j < � 8i 2 Z

)

(8)

The Hausdor� dimension also quanti�es the roughness or smoothness of a time series in the limit as the
observational scale becomes in�nitesimally �ne[4]. With respect to this, referring to the previous example, fractal
analysis can be applied meaningfully not only on the time axis of the considered time series (mentioned before),
but also on the values of the sales. Such analyisis, in fact, would reect interestingly the volatility of the recorded
values. For example, it has been shown that the fractional Brownian path (used to model stock market prices)
has Hausdor� dimension > 1, reecting the volatility of the data. After noticing this, then, we arrive at a very
interesting situation where we have a set of e�ective dimension < 1 (as it is embedded in a uni-dimensional space)
on the time axis, combined with the volatile data modeled by a function whose graph has dimension > 1. Thus,
exploring discrete families of point sets resembling �ner and �ner time series �nds its motivation. In this paper,
we will focus on the volatile part of the time series and, for this reason, the set of points on the time axis is taken
to be equidistributed as in (4) to simplify things. Finally, by looking at De�nition 5, it is noticeable that the
Haussdorf dimension of any discrete set is 0. Since the time series are discrete objects, then, it becomes crucial
to restate the de�nition of a discrete Hausdor� dimension as done in De�nition 4 in order to obtain meaningful
results.

1.3 Statement of the main theorem and preliminary results
The main theorem proved in this paper is the following:

Theorem 6. Given f : [0; 1]d� 1 ! [0; 1], let P = fP n g be the time series with

Pn =
n

(j=q; f (j=q)) : j 2 Zd� 1 \ [0; q)d� 1
o

; n = qd� 1 (9)

For any s 2 [d � 1; d), there exists f such that dim H (P ) = s.

Before proving the just stated theorem, we mention several results proved in the paper written during the
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where here j and j 0 range over Zd� 1 \ [0; q)d� 1 . By a change of variables j � j 0 to j , the above become:

q� 2( d� 1)+ s
X

j 02 Zd � 1 \ [0 ;q ) d � 1

X
j + j 02 Zd � 1 \ [0 ;q ) d � 1

j 6=0 jj j � s

= q� 2( d� 1)+ s
X

j 02 Zd � 1 \ [0 ;q ) d � 1

X

j 2 Zd � 1 \
Q d � 1

i =1 [� j 0
i ;q � j 0

i )
j 6=0

jj j � s

� q� 2( d� 1)+ sqd� 1
X

j 2 Zd � 1 \ ( � q;q ) d � 1

j 6=0

jj j � s � Cq� ( d� 1)+ s
Z q

0
r � s+ d� 2 dr

= Cq� ( d� 1)+ sqd� 1� s = C

(12)

by the integral test, where here C is a constant depending on d and s only. Note that the integral converged for
values s < d � 1. The conclusion of Lemma 7 follows by (6).

Next, we present a Lemma that gives us a lower 0001s



Proof. The goal is to show that I s (Pn ) is unbounded for s > � , and provide the quantitative lower bound
(16) provided Pn is con�ned to E , and where the constant implicit in the notation depends on s and � but is
independent of n. We write

jp � p0j � s = s
Z 1

j p� p0j
r � s� 1 dr

=
Z 1

0
1[j p� p0j ;1 ) (r )r � s� 1 dr

= s
Z 1

0
1[0 ;1 ) (r � j p � p0j)r � s� 1 dr;

)j



1.4 Review of relevant theorems from probability theory
In this section, we review some standard theorems from the literature of probability theory [2] that are later used
in the paper.
Recall that, any real valued random variable X de�ned on a probability space (
 ; � ; P) induces a probability push-
forward measure � on the measurable space (R; B(R)) by setting � (A) = P(X � 1(A)) = P(X 2 A) for any A 2 B (R).
Moreover, we de�ne the cumulative distribution function of X to be F (x) = P(X � x) = � (X 2 (�1 ; x]) and, if
this one can be written as F (x) =

Rx
�1 f (y)dy, we say that X has density function f . The �rst theorem presents



Proof. Let h(x; y ) = 1 f x + y � zg . Then, by Theorem 11:

P(X + Y � z) = E
�
1 f X + Y � zg

�
=

Z

R

Z

R
1 f x + y � zg � (dx)� (dy)

=
Z

R

Z

R
1 f x � z � y g � (dx)� (dy) =

Z

R
E

�
1 f X � z





Proposition 15. For any x; y and any such that jx � yj < 1=2b2 :

EH
�
j(x; f � (x)) � (y; f � (y)) j � s �

� C jx � yj(1 � � � s) (37)

for any s 2 (1; 2 � � )

Proof. Fix x; y such that 0 < jx � yj � 1
2b2 . Now, let z = f � (x) � f � (y). Note that, for �xed values of x and

y, z : H ! R is a real-valued random variable (i.e. measurable function). Let h(z) be the density function of
the just mentioned random variable. Then, performing two changes of variable (one to rewrite the expectation in
terms of the density and the other one consisting of the simple substitution z = jx � yj ! ):

EH
�
j(x; f � (x)) � (y; f � (y)) j � s �

=
Z 1

�1

h(z)

(( x � y)2 + z2)
s
2

dz

=
Z 1

�1

h(jx � yj ! ) jx � yj

jx � yjs (1 + ! 2)
s
2

d!

� sup
z

h(z) jx � yj1� s
Z 1

�1

1

(1 + ! 2)
s
2

d!

. sup
z

h(z) jx � yj1� s

(38)

The last step followed since the above integral is convergent for s > 1 and we are taking s 2 (1; 2 � � ). After
obtaining this bound, to complete the proof, it is then su�cient to show that h(z) � C jx � yj � � for any z.
In order to prove such result, �rst, note that the random variable z can be rewritten as:

z = f � (x) � f � (y)

=
1X

n =0

b� �n (cos(2� (bn x + � n )) � cos(2� (bn y + � n ))

=
1X

n =0

2b� �n sin
�

2�b n (y � x)
2

�
sin

�
2�

�
bn (y � x)

2
+ � n

��

=
1X

n =0

qn sin(r n + 2 �� n )

=
1X

n =0

zn

(39)

where qn = 2 b� �n sin(�b n (y � x)) and r n = 2 b� �n sin(�b n (y + x)) are independent of any � n (i.e. independent of
the in�nite sequence � ).\ Next, for any n, the cumulative distribution of the random variables zn is:

P(qn sin (r n + 2 �� n ) � y) =
1

2�
(1 � jf x 2 [r n ; r n + 2 � ] : qn sin (r n + 2 �� n ) > y jg)

=
1

2�

�
1 � 2 arccos

�
y
qn

�� (40)

for y 2 [� qn ; qn ]. This is because r n + 2 �� n in the argument of the sin function is uniformly distributed on an
interval of length 2 � and also since

y = qn sin
�

�
2

�
jf x 2 [r n ; r n + 2 � ] : qn sin (r n + 2 �� n ) > y gj

2

�

= qn cos
�

jf x 2 [r n ; r n + 2 � ] : qn sin (r n + 2 �� n ) > y gj
2

� (41)
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Since the zn are continuous random variables, we can then obtain their probability density distributions:

hn (zn ) =
d

dzn
P(qn sin (r n + 2 �� n ) � zn )

=
d

dzn

�
1

2�

�
1 � 2 arccos

�
y
qn

���

=

8
<

:

1

�
p

q2
n � z 2

n
zn 2 [� qn ; qn ]

0 zn 62[� qn ; qn ]:

(42)

Then, using the result of theorem (13), since z =
P 1

n =0 zn , we have that its density is the in�nite convolution
h = h0 � h1 ::: . Furthermore, noting that the maximum value of a probability density cannot increase under
convolution with another probability density, in order to bound h(z), it is su�cient to �nd a bound on a �nite
convolution hj � ::: � hk for some values of j and k. Recall that, by hypothesis, 0 < jx � yj < 1

2b2 . Choose an
integer k � 2 such that 1

2 b� k � 1 < jx � yj < 1
2 b� k . Thus:

�
2b3

<
�
�
�2�b k � 2

� y � x
2

� �
�
� <

�
�
�2�b k

� y � x
2

� �
�
� �

�
2

; (43)

and hence
jqn j > 2 sin

� �
2b3

�
b� �k > 2 sin

� �
2b3

�
b� � (44)

for n = k � 2; k � 1; k. Now,notice that with a change of variable zn to qn zn :

khn ks
p = 2 jqn j1� s

Z 1

0

1�
� �

p
1 � z2

n

�
�p dzn

� 2 jqn j1� s
Z 1

0

1�
� �

p
1 � z2

n

�
�p dzn

= 2 jqn j1� s
Z 1

0

1

j�z n j
p
2

dzn

(45)

where the above integral converges for valuesp < 2. Then, combining (44) and (45), for n = k � 2; k � 1; k, we
have that:

khn k 3
2

= K jqn j �
1
2 � K 0 jx � yj �

�
3 (46)

where K is an absolute constant and K 0 depends only on b. Then, by an application of Young's inequality,

khk � 1 � hk k3 � k hk � 1k 3
2

khk k 3
2

(47)

and combining H•older's inequality with (47) and (46), we obtain:

h(z) = h0 � h1 ::: � hk � 2 � hk � 1 � hk

� k hk � 2k 3
2

khk � 1 � hk k3 � k hk � 2k 3
2

khk � 1k 3
2

khk k 3
2

� K 03 jx � yj � �

(48)

for any z, completing the proof.







II = q� 2
X

j 6= j 0

j;j 02 [0 ;q ) \ Z

j j � j 0j> q
2b2

EH

 �
�
�
�

�
j
q

; f �

�
j
q

��
�

�
j 0

q
; f �

�
j 0

q

�� �
�
�
�

� s
!

(57)

The second term is easy to bound as:

II �



where

I = q� 2( d� 1)
X

j 1 6= j 0
1

j 1 ;j 0
1 2 [0 ;q ) \ Z

EH

0

@
X

�j; �j 02 [0 ;q ) d � 2 \ Zd � 2

 �
�
�
�
j 1

q
�

j 0
1

q

�
�
�
�

2

+

�
�
�
� f �

�
j 1

q

�
� f �

�
j 0

1

q

� �
�
�
�

2

+

�
�
�
�
�j
q

�
�j 0

q

�
�
�
�

2
! � s

2

1

A
(62)

II = q� 2( d� 1)
X

j 1 = j 0
1

j 1 ;j 0
1 2 [0 ;q ) \ Z

EH

0

B
B
B
@

X

�j 6= �j 0

�j; �j 02 [0 ;q ) d � 2 \ Zd � 2

 �
�
�
�
j 1

q
�

j 0
1

q

�
�
�
�

2

+

�
�
�
� f �

�
j 1

q

�
� f �

�
j 0

1

q

� �
�
�
�

2

+

�
�
�
�
�j
q

�
�j 0

q

�
�
�
�

2
! � s

2

1

C
C
C
A

(63)

where �j = ( j 2 ; :::; j d� 1). We just need to worry about bounding term I since it is greater than term II . To see this,
note that any addend in the inner sum of II is comparable to an addend of the inner sum of II but, at the same
time, the outer sum of I contains way more terms than the outer sum of II (due to the di�erence between the
conditions j 1 = j 0

1 and j 1 6= j 0
1). To bound the �rst term, we can further decompose it in two pieces I = III + IV

where:

III = q� 2( d� 1)
X

j 1 6= j 0
1

j 1 ;j 0
1 2 [0 ;q ) \ Z

j j 1 � j 0
1 j � q

2b2

EH

0

@
X

�j; �j 02 [0 ;q ) d � 2 \ Zd � 2

 �
�
�
�
j 1

q
�

j 0
1

q

�
�
�
�

2

+

�
�
�
� f �

�
j 1

q

�
� f �

�
j 0

1

q

� �
�
�
�

2

+

�
�
�
�
�j
q

�
�j 0

q

�
�
�
�

2
! � s

2

1

A (64)

IV = q� 2( d� 1)
X

j 1 6= j 0
1

j 1 ;j 0
1 2 [0 ;q ) \ Z

j j 1 � j 0
1 j> q

2b2

EH

0

@
X

�j; �j 02 [0 ;q ) d � 2 \ Zd � 2

 �
�
�
�
j 1

q
�

j 0
1

q

�
�
�
�

2

+

�
�
�
� f �

�
j 1

q

�
� f �

�
j 0

1

q

� �
�
�
�

2

+

�
�
�
�
�j
q

�
�j 0

q

�
�
�
�

2
! � s

2

1

A (65)

The last term is bounded as follows:

IV � q� 2( d� 1)
X

j 1 6= j 0
1

j 1 ;j 0
1 2 [0 ;q ) \ Z

j j 1 � j 0
1 j> q

2b2

X

�j; �j 02 [0 ;q ) d � 2 \ Zd � 2

�
�
�
�
j 1

q
�

j 0
1

q

�
�
�
�

� s

� q� 2( d� 1) q2q2( d� 2) (2b2)s = (2 b2)s

(66)

In the inner sum of III , the quantity
�
�
� j 1

q � j 0
1
q

�
�
�
2

+
�
�
� f � ( j 1

q ) � f � ( j 0
1
q )

�
�
�
2

is constant (i.e. does not dep71(�.072r -3of)]nJ 0 -1782n6w5878( j



X

�j; �j 02 [0 ;q ) d � 2 \ Zd � 2
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