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1 Introduction

The goal of this paper is to provide a reasonably complete exposition of the Ax-Kochen theorem and its
(partial) resolution of Artin’s conjecture, in addition to a small selection of other applications of model
theory and mathematical logic to algebra. This is based largely on Chang and Keisler’s



On the other hand, the connections between syntax and semantics are important too. The language





Finally, it remains to show that M is truly a model of T



Theorem 2.7





4 Ultraproducts

In proving the completeness theorem above, we constructed a model out of constants, and saw that the
construction itself had interesting applications (though many of a negative nature). Another important kind
of construction in model theory is that of the ultraproduct. Essentially, the ultraproduct will allow us to
construct the “average” model from a family of models. This construction can give an alternative proof of
the compactness theorem, though the control it gives over the cardinality of the resulting model is not fine
enough to prove some of the theorems stated above.

Definition 4.1. Given a set X, a subset F of P(X) is called a filter on X if:

1. F is nonempty.

2. F







6 Ax-Kochen

Our final goal is to prove the Ax-Kochen theorem, closely following the presentation in [1].

Definition 6.1. A valued field F , with cross-section, is a model of the two-sorted language

L = {F, +





Proof. First, we may assume that F and G are saturated fields of cardinality !1 - the set of all first-order
sentences true of F is complete and consistent, so it has a saturated model of cardinality ||L||+ = |2!| = !1

(contingent on the GCH), and likewise for G. Clearly, if F and G are saturated then their value groups and
residue-fields are saturated. Moreover, outside the case where val(F ) = val(G) = {1}, the value groups and
residue fields all have cardinality !1 (in that trivial case, F ⇠= F ⇤ ⌘ G⇤ ⇠= G and there is nothing to prove).

We will write f1 : F1 $ G1 i↵ f1 is an isomorphism and

(val(F ), x)
x2val(F1) ⌘ (val(G), x)

x2val(G1)

Our goal is to show that F and G are isomorphic using a back-and-forth argument like that used to
show that any two elementarily equivalent models of the same cardinality are isomorphic. An outline of the
induction is as follows:

1. Since F ⇤ ⌘ G⇤ and |F ⇤| = |G⇤| = !1, they are isomorphic. It follows from Hensel’s lemma that they
are algebraically closed in F and G, respectively. This is our base case.

2. Suppose F1 and G1 are algebraically closed valued subfields of F and G, containing their respective
residue fields, and where val(F1) = val(G1) is countable. Let f1 : F1 $ G1 extending f0 : F ⇤ $ G⇤.
For every x 2 F � F1 there exist algebraically closed valued subfields F2 and G2 with x 2 F containing
F1 and G1, a function f2 : F2 $ G2 extending f1, and such that



of p(t) under f1, then we know that val(q(y)) = val(f(e
r

))yr because f1 is an isomorphism. This proves
val(F1(x)) = V and
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