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1 Introduction

The name “Cauchy problem” is usually attributed to a class of boundary value
problems associated to partial di↵erential equations (PDE). The study of such
problems began in earnest with Cauchy himself, who investigated the existence
of solutions to analytic nonlinear PDE of the second order [1, 2, 3, 4, 5, 6]. This
work was extended to general analytic nonlinear systems of PDE by Kowalevski
in 1875 [11]. Both results are collectively known as the Cauchy-Kowalevski
theorem, which is the primary focus of this paper. It is worth noting that in the
same year as Kowalevski, Darboux published a similar result, which applied to
less general problem [7]. In 1898, Goursat simplified Kowalevski’s argument [10],
and it is Goursat’s proof that we present here.

The fact that properly defined Cauchy problems have unique analytic solu-
tions is incredibly powerful. Equations such as the wave equation, Maxwell’s
equations, and the heat equation constitute Cauchy problems when paired with
appropriate boundary conditions.

The applicability of the Cauchy-Kowalevski theorem is, however, limited.
One major assumption for the theorem is that the functions describing the
boundary data and the partial di↵erential equation are all analytic (this term
will be defined later). This is an unfortunately stringent requirement, and as



2 Tools

In this section we present the notation used throughout the argument for the



Care should be taken to avoid confusing real analytic functions and complex

analytic functions, which are defined identically to real analytic functions with
the word “real” replaced by “complex.” This is because complex analytic func-



3 Cauchy-Kowalevski Theorem

The main objective of this section is the resolution of the Cauchy problem,
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Consider the first order problem
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where, for each ↵, j is the smallest index with ↵
j

6= 0, and G does not depend on
y

0k

. We posit that if u is a solution of (2), then we can construct a solution to (3)
by setting y
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u. In fact, this can be readily seen by the construction
of (3). A less obvious fact is that if y is a solution to (3), then y

00 is a solution
to (2). We shall prove this now.

It can be clearly seen from (3a) that
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for i + l  k. This fact and (3b) together imply that
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for some function f
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: Rn�1 7! R. But we can use the initial data to determine
f
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. From (3d), we find
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which implies that f

↵i

(x) = 0 everywhere. Hence (7) holds for all ↵ 6= 0.
Now we solve for y
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. From (3c), (4), and (7), we have
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where  is a vector-valued function containing the analytic functions @↵



where the q



for all i



The solution to (20) is therefore given by
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By taking a derivative with respect to s = r

2 and using Green’s theorem, this
reduces to
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partielles d’ordre quelconque. CR Acad. Sci. Paris, 80:317–318, 1875.

[8] L.C. Evans and American Mathematical Society. Partial Di↵erential Equa-

tions. Graduate studies in mathematics. American Mathematical Society,
2010.

[9] G.B. Folland. Introduction to Partial Di↵erential Equations. Princeton
University Press, 1995.


