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In this thesis we study what happens when some entries of a random matrix 
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𝑋ே(𝑖, 𝑗) = 𝑋ே(𝑗, 𝑖) =
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𝐵ே =
1

ඥ𝑝
∙ 1ே ∘ 𝐴ே 

will have mean zero, variance one, independent entries. Because 𝐵ே satisfies the conditions 

for Wigner’s semicircle law, then the empirical distribution of the eigenvalues of 𝐵ே 

converges to 𝝈𝟏. This tells us that the eigenvalues of 1ே ∘ 𝐴ே are just the eigenvalues of 𝐵ே 

multiplied by ඥ𝑝
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Theorem 2.1:  Let {𝐴ே} be an ensemble of 𝑁𝑥𝑁 random matrices with empirical distribution 

of the eigenvalues 𝐿ே, and let 𝜶 be some distribution with bounded support [−𝑀, 𝑀]. 

Suppose that  

(i) For all 𝑘 ∈ ℕ,         

lim
ே→ஶ

𝐸〈𝑥, 𝐿ே〉 = 𝐸〈𝑥 , 𝜶〉. 

(ii) For all 𝑘 ∈ ℕ and 𝜖 > 0,      

lim
ே→

ℙ൫ห〈𝑥, 𝐿ே〉 − 𝐸〈𝑥 , 𝐿ே〉ห > 𝜖൯ = 0. 

Then the empirical measure of the eigenvalues 𝐿ே  converges weakly in probability, to the 

distribution 𝜶. 

Assume that 𝐿ே and 𝜶 satisfy conditions (i) and (ii). We need to show that for all 

continuous bounded functions 𝑓 and for all 𝛿 > 0: 

lim
ே→ஶ

ℙ(|〈𝑓, 𝐿ே〉 − 〈𝑓, 𝜶〉|> 𝛿) = 0. 

For such an 𝑓 by the Weirstrass Approximation Theorem, we can find a polynomial 

𝑄ఋ(𝑥) ≔ ∑ 𝑏𝑥
ୀଵ  that satisfies:  

sup
௫:|௫|ஸோ

|𝑄ఋ(𝑥) − 𝑓(𝑥)| ≤
𝛿
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where 𝑅 = (2𝑀)ଶ. Note,  

ℙ(|⟨𝑓, 𝐿ே⟩ − ⟨𝑓, 𝜶⟩| > 𝛿) ≤ 

ℙ൫|〈𝑓, 𝐿ே〉 − 〈𝑓

su

𝐿𝐿

〉 ,

ℙ

/

𝐿

ே

〉

〈

〉
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by Lemma 2.2. Similarly,  

𝑃ଶ = ℙ ൬|𝐸〈𝑄ఋ , 𝐿ே〉 − 〈𝑓, 𝛼〉| ∙ 1|௫|ஸ >
𝛿

2
൰ ≤ ℙ ൬|𝐸〈𝑄ఋ , 𝐿ே〉 − 〈𝑄ఋ , 𝛼〉| >

𝛿

4
൰ → 0 

by Lemma 2.1. 

Finally, by Chebyshev’s inequality for all 𝜖 > 0: 

ℙ൫〈|𝑥|1|௫|வ , 𝐿ே〉 > 𝜖൯ ≤
1

𝜖
𝐸〈|𝑥|1|௫|வ , 𝐿ே〉 ≤

𝐸〈|𝑥|ଶ , 𝐿ே〉

𝜖𝐵
   . 

Then by Lemma 2.1,  

limsup
ே→ஶ

ℙ൫〈|𝑥|1|௫|வ , 𝐿ே〉 > 𝜖൯ ≤
𝑚ଶ

𝜖𝐵
≤

𝑀ଶ

𝜖(2𝑀)ଶ
   . 

The left-hand side of the above expression is increasing in 𝑘, but the right-hand side is 

decreasing in 𝑘, so  

limsup
ே→
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𝐸〈𝑥 , 𝐷ே〉 =
1

𝑁
𝑡𝑟(1ே ∘ 𝐴ே) =

1

𝑁
 𝐸1ே(𝑖ଵ, 𝑖ଶ)𝐴ே(𝑖ଵ, 𝑖ଶ) … 1ே(𝑖, 𝑖ଵ)𝐴ே(𝑖, 𝑖ଵ)

ே

భ,మ,…,ೖୀଵ

=
1

𝑁
 𝐸[1ே(𝑖ଵ, 𝑖ଶ) … 1ே(𝑖 , 𝑖ଵ)] ∙ 𝐸[𝐴ே(𝑖ଵ, 𝑖ଶ) … 𝐴ே(𝑖 , 𝑖ଵ)]

ே

భ,మ,…,ೖୀଵ

   . 

Remember that every moment of the Bernoulli random variable is equal to its 

parameter 𝑝(𝑁) ≤ 1. The 𝐸[1ே(𝑖ଵ, 𝑖ଶ) … 1ே(𝑖 , 𝑖ଵ)] term is the expectation of at most 𝑘 

independent Bernoulli random variables, which happens when none of the indices generate 

entries that are the same, and at least one Bernoulli random variable, which happens when 

the indices all generate the same entry. Therefore,  

𝑝(𝑁) ≤ 𝐸[1ே(𝑖ଵ, 𝑖ଶ) … 1ே(𝑖
�6

�Ç

�6

ଵ

�'
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≤
1

𝜖
൫𝐸ห〈𝑥 , 𝐷ே〉 − 〈𝑥 , 𝐿ே〉
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𝐶 =
1

𝑛 + 1
ቀ

2𝑛
𝑛

ቁ. 

If 𝑘 is odd, then because 𝝈𝒑 
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 If there is a bijection from 𝑤𝒊 to 𝑤
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𝑢 consisting of two closed N-words 𝑤ଵ, 𝑤ଶ of length 𝑘 + 1 with 𝑁
 ≥ 2 for all 𝑒 ∈ 𝐸 and 

𝐸௪భ
∩ 𝐸௪మ

≠ ∅. Then  

𝐸(〈𝑥 , 𝐷ே

�&
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By the proof presented in Section 2.3, when ignoring the [1 − 1ே(𝑖ଵ, 𝑖ଶ) … 1ே(𝑖, 𝑖ଵ)] part of 

each term, we know that there are an order 𝐶ೖ

మ

𝑁 ଶ⁄ ାଵ terms 𝐸𝑋ே(𝑖ଵ, 𝑖ଶ) … 𝑋ே(𝑖, 𝑖ଵ) in the 

summation that survive when 𝑁 goes to ∞, and they are all equal to 1.  For each term we 

refer to the 𝑋൫𝑖, 𝑖ାଵ൯ as slot 𝑗, with 𝑋(𝑖 , 𝑖ଵ) being slot k. Then entry 𝑋ே(𝑠, 𝑡) appears each 

slot 𝑗 an order of 𝐶ೖ

మ

𝑁 ଶ⁄ ିଵ times. Then each entry appears in at most 𝑘 ∙ 𝐶ೖ

మ

∙ 𝑁 ଶ⁄ ିଵ. 

We see that [1 − 1ே(𝑖ଵ, 𝑖ଶ) … 1ே(𝑖 , 𝑖ଵ)] = 1 whenever at least one of the 1ே൫𝑖𝑖ାଵ൯ 

is equal to zero. These are the distortions, and there are 𝜃(1ே) of them. Because the 𝜃(1ே) 

distortions appear in at most 𝑘 ∙ 𝐶ೖ

మ

∙ 𝑁 ଶ⁄ ିଵ terms,  

ห𝐸〈𝑥 , 𝐿ே〉 − 𝐸〈𝑥 , 𝐷ே〉ห ≤ 𝜃(1ே) ∙ 𝑘 ∙ 𝐶
ଶ

∙
𝑁 ଶ⁄ ିଵ

𝑁 ଶ⁄ ାଵ
=

𝜃(1ே)

𝑁ଶ
→ 0. 

This completes the proof of conditions (i), so Theorem 1.3 holds.  

3. The General Case of Theorem 1.2  

Theorem 1.2 assumes that 𝜃(1ே) = 𝑝𝑁 for all 𝑗 ∈ ℕ. We have also studied when this 

is not the case, and 𝜃(1ே) can be anything for each 𝑗. We are unable to prove any strong 

theorems in this case but are able to find some moments for the distribution of the 

eigenvalues. By the proof of Theorem 1.2, we still know that the odd moments are zero 

when taking the limit as 𝑁 goes to infinity. For the even moments we know that  

 

lim
ே→ஶ

𝐸〈𝑥ଶ, 𝐷ே〉 = lim
ே→ஶ

 1ே(𝑖ଵ, 𝑖ଶ)

ே

భ,మୀଵ

. 

lim
ே→ஶ

𝐸〈𝑥ସ, 𝐷ே〉 = lim
ே→ஶ

2  1ே(𝑖ଵ, 𝑖ଶ)1ே(𝑖ଶ, 𝑖ଷ)

ே

భ,మ,యୀଵ

=  𝜃
ଶ

ே

ୀଵ

.  
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lim
ே→ஶ

𝐸〈𝑥, 𝐷ே〉 = lim
ே→ஶ

2  1ே(𝑖ଵ, 𝑖ଶ)1ே(𝑖ଶ, 𝑖ଷ)1ே(𝑖ଶ, 𝑖ସ)

ே

భ,మ,యୀଵ

+ 3  1ே(𝑖ଵ, 𝑖ଶ)1ே(𝑖ଶ, 𝑖ଷ)1ே(𝑖ଷ, 𝑖ସ)

ே

భ,మ,య,రୀଵ

  

= lim
ே→ஶ

2  𝜃
ଶ

ே

ୀଵ

+ 3  𝜃1ே(𝑖, 𝑗)𝜃

ே

,,ୀଵ

 .  

 

We can find similar expressions for higher moments. We find these expressions by 

writing out all the possible graphs of closed words length 


ଶ
+ 1 where each edge in the 

graph are crossed twice, and then counting how many times each graph can be generated by 

a word. From the proof of Theorem 1.2, these are the only terms that are contribute to the 

sum in the limit. The graphs and counts for the for the moment equations shown above are 

listed on the next page.  
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