
APPLICATIONS OF
LINEAR PROGRAMMING

TO APPROXIMATION ALGORITHMS

JACK MANDELL

Abstract. Combinatorial optimization plays a vital role in areas
such as operations research and computer science. When design-
ing algorithms to solve combinatorial optimization problems, it is
important to consider both their accuracy and e�ciency at �nding
optima. However, many of the natural combinatorial optimiza-
tion problems that arise are known to be NP-hard, so hope for
polynomial-time algorithms is slim. By easing the requirement of
�nding true optimal solutions, approximation algorithms provide a
framework for balancing optimally and runtime. In this paper, we
explore how approximation algorithms can be created for various
NP-hard problems by adapting techniques from linear program-
ming.

1. Introduction

A combinatorial optimization problem can be described as

minimize (or, maximize) c(x1, x2 . . . , xn)
subject to (x1, x2 . . . , xn) ∈

where
 ⊆ Rn is called the feasible region , and c :
 → R is an
objective function to be optimized. We say that anyx ∈
 is a
feasible solution to the problem.

To motivate a framework for describing problems in combinatorial
optimization, we will de�ne a set of optimizations problems known as
Minimum Weight Vertex Cover. We �rst de�ne a concept in graph
theory.

De�nition 1.1. Let G = (V, E) be a graph with V = [n] and let
C ⊆ V . C is a vertex cover if for any { i, j } ∈ E , either i ∈ C or
j ∈ C.

Example 1.2. Minimum Weight Vertex Cover (Min-WVC) :
Given a graphG = (V, E) with non-negative weight function c : V →
R+ , �nd a vertex cover of minimum total weight.

1

2 JACK MANDELL

Note that Min-WVC is not just a single combinatorial optimiza-
tion problem, but really an infinite set of combinatorial optimization
problems: there is a di�erent combinatorial optimization problem for
each di�erent choice of graphG and cost functionc. We would like to
de�ne a framework that captures this idea.

We say that a class of combinatorial optimization problems � is a
set of optimization problems that share a common structure and can

APPLICATIONS OF LP TO APPROXIMATION ALGORITHMS 3

weaker de�nition which is used in practice to analyze the performance
of approximation algorithms.

De�nition 1.4. Let k ≥ 1. A algorithm A is a k -factor approxima-
tion for � if for any instance I ,

A(I) ≤ k · opt(I) (1.1)
if � is a class of minimization problems, and

opt(I) ≤ k · A(I) (1.2)
if � is a class of maximization problems.

Consider the minimization form �rst of the k-factor approximation.
If we divide by opt(I) on both sides of (1.1), then we obtain

A(I)
opt(I)

≤ k

This happens to look very similar to the de�nition of the performance
ratio. Because we are only looking for an upper bound (as opposed to
the least upper bound) of the ratios ofA(I)/opt(I), calculating opt(I)

4 JACK MANDELL

allows one to de�ne a cost functionc and a set of linear inequality
constraints that will de�ne
. For the majority of the paper, we will use
combinatorial optimization problems that arise in graph theory, which
can be converted into integer linear programs quite naturally. Once the
problem is converted into one of these programs, we can take advantage
of the rich theory and methods from integer and linear programming
to create an approximation algorithm. Two of these methods we will
explore arerelaxation and the primal-dual scheme .

Relaxation involves increasing the size of the feasible region
 to
some � �
, where �nding the optimum in � can be found in polyno-
mial time. The optimal solution in � can then be converted, usually
through some sort of rounding technique, into a feasible solution in

, which will be an approximate solution to the original optimization
problem. To ensure the approximation algorithm runs in polynomial
time, it is important to make sure that rounding can also be done
in polynomial time. To analyze an approximation algorithms perfor-
mance, the key will be estimating the loss in optimality that is gener-
ated when converting the optimum in � to a feasible solution in
.

To show how ak-factor approximation can be obtained, we will use
the following analysis. Suppose an instanceI of � is the problem
c(x �) = min x2
 c(x). Now we relax the problem to � �
 and let
I 0 denote the instance of the problem that givesc(y�) = min y2 � c(y).
Lastly, we round y� to somexA 2
. We summarize the setup with
the �gure below:

Then since
 � � and we are minimizing over both sets, it follows that
c(y�) � c(x �). Hence

c(xA)
c(x �)

�
c(xA)
c(y�)

To use the notation from the beginning of the introduction, we have
that A(I) = c(xA), opt(I) = c(x �), and opt(I 0) = c(y�) and so

APPLICATIONS OF LP TO APPROXIMATION ALGORITHMS 5

A(I)
opt(I)

�
A(I)

opt(I 0)
(1.3)

Since we are able to obtainopt(I 0) in polynomial time, if we �nd a k
such that

A(I)
opt(I 0)

� k;

for any I , then by (1.3), we have thatA(I) � k � opt(I) and so A is
a k-factor approximation for the class of problems �. We can repeat
the above analysis for the maximization problem as well and obtain a
similar conclusion.

2. Linear Programming

2.1. Preliminaries. A nice class of optimization problems are ones
where the cost functionc is linear, and
 is the intersection of linear
half-spaces. These type of optimization problems can be formulated
into what are known asLinear Programs (LP). If only integer values
in
 are allowed, then it is called an Integer Linear Program (ILP).
We will see that Min-WVC as well as several other combinatorial

6 JACK MANDELL

We will now transform Min-WVC into an ILP. Let G = (V; E) and
V = [n]. If C � V is the vertex cover with minimum weight, de�ne

x i :=
�

1 if i 2 C
0 if i =2 C

SinceC is a vertex cover, for any edgef i; j g 2 E, we must havei 2 C
or j 2 C and sox i + x j � 1. Sincec(i) is the cost of including vertex
i in the vertex cover, the ILP for Min-WVC can be stated as follows.

minimize
nX

i =1

c(i)x i

subject to x i + x j � 1 f i; j g 2 E
x i 2 f 0; 1g i 2 V

8 JACK MANDELL

Proof. To do this, we will construct a sequence of instancesI n , where
A(I n)=opt(I n) becomes arbitrarily close to 2.

Let Cn denote the cyclic graph ofn vertices forn 2 N. One can think
of this as ann-gon. Then take instanceI k to be C2k+1 together with the
weight function c(i) = 1 for every i 2 V. Since the weight of each vertex
is the same and the graph is cyclic, it follows that an optimal vertex
cover isC = f 1; 3; 5; : : : ; 2k+1g, all odd vertices. Henceopt(I k) = k+1.
But, if we convert the instanceI k into the integer linear program (2.2)
and solve the relaxation (2.3), we obtain thatx �

i = 1
2 for every i 2 V.

Hence Algorithm 1 rounds allx i to 1, and soA(I k) = 2 k+1. Therefore,

A(I k)
opt(I k)

=
2k + 1
k + 1

If we let k ! 1 , it follows that r (A) � 2. So, sincer (A) � 2 as
previously said, it follows that r (A) = 2.

�

Are there approximation algorithms forMin-WVC that have a bet-
ter performance ratio than 2? In other words, a (2� �)-factor approx-
imation for some� 2 (0; 1). In fact, if the Unique Games Conjecture
is true, which relates to the approximability of various problems in
Computer Science, then there are no polynomial-time algorithms with
performance ratio better than 2! So, not only is it hard to �nd exact
algorithms to solveMin-WVC in polynomial time, it is hard to �nd
goodapproximation algorithms for Min-WVC in polynomial time!

2.2.2. Iterated Rounding.
One issue that may present when implementing threshold rounding for
some integer linear program is that rounding down a combination ofx �

i
may lead to a violation of one or more constraints. To address this issue,
rounding can be performed in iterations to ensure that constraints are
never violated. We will introduce the Minimum Generalized Spanning
Network Problem to illustrate this method. First, we introduce some
de�nitions and lemma from graph theory which will be helpful for the
problem de�nition and construction of the integer linear program.

De�nition 2.4. Given a graphG = (V; E) and k 2 Z. G is k -edge-
connected if G0 = (V; EnF) is connected for anyF � E with jF j < k .

De�nition 2.5. Let G = (V; E). A cut of G, denoted by (S; V nS) for
some; 6= S � V, is a partition of V. The cut-set of a cut (S; V n S),
denoted by� G(S), are the set of edges inG with one vertex in eachS
and V n S.

APPLICATIONS OF LP TO APPROXIMATION ALGORITHMS 9

Example 2.6. Generalized Spanning Network (Min-GSN) :
Given a graphG = (V; E) with non-negative cost functionc : E ! Z+

on edges andk 2 Z, �nd a k-edge-connected subgraph of minimum
weight.

Lemma 2.7. G is k-edge-connected if and only ifj� G(S)j � k for any
cut (S; V n S).

Proof. Assume that there exists a cut (S; V n S) such that j� G(S)j =
l < k . Then deleting thesel edges fromF makes the subgraphG0

disconnected, which means thatG0 can not bek-edge-connected.
Suppose thatG is not k-edge-connected. Then there exists some

F � E with jF j < k such that G0 = (V; E n F) is disconnected. Let
(H1; : : : ; Hm) be the connected components ofG0. Let F1 � F denote
the set of edges with one vertex inH1 and one inH i for i 6= 1. Then
F1 = � G(S) � F where S is the set of vertices in componentH1. We
found a cut (S; V n S) with j� G(S)j < k .

�

We �rst convert Min-GSN into an integer linear program. LetG0 =
(V; F) denote the optimal subgraph, whereF � E. Note that G0can be
determined solely by knowingF . Hence, to �nd the optimal subgraph
we need only determineF . Denote

xe :=
�

1 if e 2 F

10 JACK MANDELL

De�nition 2.8. Let f : 2V ! Z. We say that f is weakly supmodular,
if f (V) = 0 and for any A; B � V

f (A) + f (B) � f (A n B) + f (B n A)

or
f (A) + f (B) � f (A [B) + f (B \ A)

APPLICATIONS OF LP TO APPROXIMATION ALGORITHMS 11

Algorithm 2 Iterated Rounding Approximation for Min-GSN

12 JACK MANDELL

Now we repeat this process again but with iterationi = t � 3 to obtain

A(I) �
X

e2 Ft � 2

c(e) + 3
X

e2 F t � 2

c(e)x t � 3
e

�
X

e2 Ft � 3

c(e) + 3
X

e2 F t � 3

c(e)x t � 3
e

By, repeating until going all the way down toi = 0,

�
X

e2 F0

c(e) + 3
X

e2 F t

c(e)x0
e

= 3
X

e2 E

c(e)x0
e � 3 � opt(I)

Hence Algorithm 2 is a 3-factor approximation. �

2.2.3. Random Rounding.
Round fractional values randomly to an integer. We can obtain pretty
good expected performances, and the algorithms can be derandomized
in practice using conditional expectation.

De�nition 2.11. Given a graphG = (V; E), F � E is an edge cut
if G0 = (V; E n F) has two connected components.

Example 2.12. Minimum Feasible Cut (Min-FC) :
Given a graph G = (V; E) with edge weight c : E ! R+ , a vertex
s 2 V, and a setM of pairs of vertices inG, �nd a subset of V with
the minimum-weight edge cut that containss but does not contain any
pair in M .

We will �rst transform Min-FC into an integer linear program. Let
S denote the optimal subset of vertices andF be the minimum-weight
edge cut. Let

yi :=
�

1 if i 2 S
0 if i =2 S

xe :=
�

1 if e 2 F
0 if e =2 F

To ensure that S does not contain any pair of vertices inM , for any
f i; j g 2 M

APPLICATIONS OF LP TO APPROXIMATION ALGORITHMS 13

xe = 0 if and only if (yi ; yj) = (0 ; 0) or (yi ; yj) = (1 ; 1). We can
simplify this condition to xe � j yi � yj j. This inequality can then be
decomposed into two constraints,xe � yi � yj and xe � yj � yi , to
avoid using absolute values in the linear inequality. In summary, we
can representMin-FC in the following integer linear program:

minimize
X

e2 E

c(e)xe

subject to xe � yi � yj e = f i; j g 2 E
xe � yj � yi e = f i; j g 2 E
yi + yj � 1 f i; j g 2 M
ys = 1
yi ; xe 2 f 0; 1g i 2 V; e2 E

(2.11)

We can relax (2.11) to the following linear program:

minimize
X

e2 E

c(e)xe

subject to xe � yi � yj e = f i; j g 2 E
xe � yj � yi e = f i; j g 2 E
yi + yj � 1 f i; j g 2 M
ys = 1
0 � yi ; xe � 1 i 2 V; e2 E

(2.12)

We can create an approximation algorithm forMin-FC as follows:

Algorithm 3 Random Rounding Approximation forMin-FC
1. Convert instanceI of Min-FC into the integer linear program

(2.11)
2. Relax the constraints of (2.11) to the instanceI 0 to form the

linear program (2.12)
3. GenerateU � Unif(1=2; 1) and if (I

14 JACK MANDELL

xA
e := jyA

i � yA
j j, it follows that both xA

e � yA
j � yA

i and xA
e � yi � yj .

Now, we show the performance bound. By linearity of expectation,

E

"
X

e2 E

c(e)xA
e

#

=
X

e2 E

c(

APPLICATIONS OF LP TO APPROXIMATION ALGORITHMS 15

paper. Recall Example (2.1):

minimize 3x1 + x2

subject to 2x1 + 2x2 � 4
� x1 �

16 JACK MANDELL

To maximize the lower bound, we then generate the linear program

maximize 4y1 � 4y2 + y3

subject to 2y1 � y2 + 2y3 � 3
2y1 � y2 � y3 � 1
y1; y2; y3 � 0

(2.14)

Linear program (2.14) is known as thedual of linear program (2.13).
If we recall the standard form primal

minimize cT x
subject to Ax � b

x � 0
(2.15)

then the dual linear program is

maximize bT y
subject to AT y � c

y � 0
(2.16)

Theorem 2.14 (Weak Duality Theorem). If x and y are feasible so-
lutions to linear programs (2.15) and (2.16), respectively, then we have
that cT x � bT y.

Proof. Sincex and y are feasible, we have that

cT x � (AT y)T x = yT Ax � yT b= (yT b)T = bT y (2.17)

�

Theorem 2.15 (Strong Duality Theorem). The primal problem has a
�nite optimum i� its dual has a �nite optimum. The optimal values
are the same.

The proof of the above theorem is not hard, but is tedious. It involves
the use of Gaussian Elimination to eliminate variables from the linear
program. We omit this from the paper.

We can use Weak and Strong Duality to derive the complementary
slackness conditions, which test whether two given feasible solutions
x and y of the primal and dual linear program are optimal. These
conditions will play a major role in the primal-dual scheme.

De�nition 2.16. If x and y are feasible solutions to linear programs
(2.15) and (2.16), we say thatx and y satisfy the complementary
slackness conditions if

(1) x j > 0 =) (AT y) j = cj

(2) yi > 0 =) (Ax) i = bi

The conditions (1) and (2) are also known as the primal and dual com-
plementary slackness conditions, respectively. We say that a constraint
is tight if equality holds.

APPLICATIONS OF LP TO APPROXIMATION ALGORITHMS 17

Lemma 2.17. x and y are feasible solutions to linear programs (2.15)
and (2.16) that satisfy the complementary slackness conditions if and
only if x and y are optimal solutions.

Proof. For any componentx j of x

18 JACK MANDELL

approximation algorithm will follow. We will demonstrate this idea
later on by converting the problem Minimum Feedback Vertex Set into
an instance ofMin-HS . Since performance analysis will be done for
the general problem, it will be easy to analyze the performance of the
algorithm for any instance. As usual, denotexe by

xe :=
�

1 if e 2 A
0 if e =2 A

and so the integer linear program forMin-FVS can be written as
follows:

minimize
X

e2 E

c(e)xe

subject to
X

e2 Ti

xe � 1 8i 2 [p]

xe 2 f 0; 1g

(2.18)

The dual of the relaxation of the integer linear program (2.18) can thus
be written as

maximize
pX

APPLICATIONS OF LP TO APPROXIMATION ALGORITHMS 19

that for all e 2 E, the feasible solutiony satis�es
X

i 6= k:e2 Ti

yi � c(e)

Then the maximum that yk can be while ensuring thaty is still feasible
is the distance to the "closest" constraint. In other words,

yk = min
e2 Tk

(

ce �
X

i 6= k:e2 Ti

yi

)

We then repeat this process untilx is a feasible solution. Formally, the
primal-dual scheme can be constructed as follows:

Algorithm 4 General Primal-Dual Scheme forMin-HS
1. Let y = 0 and A = ;
2. While there exists somek 2 [p] such that A \ Tk = ;
3. Increaseyk until there is somee 2 Tk such that

P
i :e2 Ti

yi = c(e)
4. A A [f eg
5. Output A

To demonstrate how the algorithm works, we give the example below.

Example 2.19. Let E = f 1; 2; 3; 4; 5g; T1 = f 1; 2g, T2 = f 2; 3g, T3 =
f 1; 4; 5g, and lastly de�ne c(e) = e for any e 2 E. Then, it is easy to
see that the optimal hitting set isA = f 1; 2g. By applying the general
dual program formulation (2.22) to this instance ofMin-HS , we obtain
the following linear program:

maximize y1 + y2 + y3

subject to y1 + y3 � 1
y1 + y2 � 2
y2 � 3
y3 � 4
y3 � 5
y1; y2; y3 � 0

(2.20)

Now we begin the algorithm. Start withy = (0 ; 0; 0) and A = ; .
Iteration 1 : SinceA \ Tk = ; for all k 2 f 1; 2; 3g currently, suppose

we begin by choosingk = 1. Note that since y1 is in the �rst two
constraints of (2.20) and all components ofy are zero, the maximum
we can increasey1 to without violating any constraints is y1 = 1. When
we do this, the �rst constraint, which corresponds toe = 1, becomes
tight. Hence, we adde = 1 to A and soA = f 1g.

Iteration 2 : Since 12 T1 and 12 T3, the only set not hit yet is T2.
Hence, we are only left to choosek = 2. Note that since y2 is in the

20 JACK MANDELL

second and third constraints of (2.20) andy1 = 1, the maximum we
can increasey2 to without violating any constraints is y2 = 1. When
we do this, the second constraint, which corresponds toe = 2, becomes
tight. Hence, we hade = 2 to A and soA = f 1; 2g.

Since all theTk are hit, we have found an approximate solution to
the problem: A = f 1; 2g. In this case,A(I) = opt(I). However, if we
chose a di�erentk instead ofk = 1 in the �rst iteration, we would have
ended up with a non-optimal solution as our approximate solution.

Theorem 2.20. Let k = max i 2 [p] jTi j. Algorithm 4 is a k-factor ap-
proximation for Min-HS .

Proof.

A(I) =
X

e2 E

c(e)xA
e

=
X

e2 A

c(e)

But edge e was only added to the setA when the corresponding dual
constraint in (2.22) was tight. In other words,c(e) =

P
i :e2 Te

yi , where
the yi are the values of the dual solution after the algorithm ends.
Hence,

A(I) =
X

e2 A

X

i :e2 Ti

yi

We can then rearrange the summation in the above expression

A(I) =
pX

i =1

X

e:e2 Ti \ A

yi

=
pX

i =1

jTi \ Ajyi

Let k = max i 2 [p] jTi j. Then sincejTi \ Aj � j Ti j � k,

� k
pX

i =1

yi

Recall that
P p

i =1 yi is the objective function of the dual linear program
(2.22), and so by the Weak Duality Theorem

P p
i =1 yi � opt whereopt

is the optimal value of the relaxation of (2.18). It follows that
X

e2 E

c(e)xe � k � opt

APPLICATIONS OF LP TO APPROXIMATION ALGORITHMS 21

and so Algorithm 4 is ak-factor approximation with k = max i 2 [p] jTi j
�

We will now show how we can transform an optimization problem
from graph theory into an instance ofMin-HS , even if it may not look
like one at �rst. The problem we will use is Minimum Feedback Vertex
Set. In order to give the problem de�nition, we include some prelimi-
naries from graph theory which will be helpful in the construction.

De�nition 2.21. Let G = (V; E) be a directed graph. C � V is
called afeedback vertex set if the subgraph generated by removing
all vertices in C (as well as edges that contain vertices inC) is acyclic.

De�nition 2.22. A (directed) graph G = (V; E) is bipartite if V can
be partitioned into two sets such no two vertices in the same partition
are adjacent.

De�nition 2.23. SupposeG is a bipartite graph, with (S; V nS) being
the partition of vertices. G is abipartite tournament if for any u 2 S
and v 2 V n S, either (u; v) 2 E or (v; u) 2 E, but not both.

Example 2.24. Minimum Feedback Vertex Set (Min-FVS) :
Given a bipartite tournament G = (V; E) with non-negative vertex
weight c : V ! N, �nd a feedback vertex set of minimum weight.

The following Lemma will be the key tool which will connectMin-
FVS to Min-HS .

Lemma 2.25. A bipartite tournament G = (V; E) is acyclic if and
only if it contains no cycle of length 4.

Proof. The forward direction is trivial. If the tournament is acyclic,
then in particular, it can not contain any cycles of length 4.

Now suppose that there exists a cycle inG. Let C be a cycle having
vertex path (v1; v2; : : : ; vm ; v1) with minimal length m. We will show
that m = 4 by showing all other possibilities ofm give contradictions.
SinceG is bipartite, we need only considerm that are even. If m = 2,
then this does not give a valid cycle, as this means that (v1; v2) and
(v2; v1) are both edges inG, which contradicts that G is a bipartite
tournament. Suppose thatm � 6. Then sinceG is a bipartite tourna-
ment, there must exist some edge betweenv3 and vm , either (v3; vm) or
(vm ; v3), but not both. First suppose that the edge is (vm ; v3). Then
(v3; v4; : : : ; vm ; v3) is a cycle of strictly smaller length, which contradicts
that C is minimal. Suppose the edge is (v3; vm). Then (v1; v2; v3; vm ; v1)
is a cycle of length 4, which contradicts thatC is minimal. Hence, if
G is acyclic, there must be no cycles of length 4.

�

22 JACK MANDELL

Constructing the integer linear program forMin-FVS will be straight-
forward if we use Lemma (2.25). Note that in this case, the ground set
is V and the hitting sets are all 4-cycles in the graphG. DenoteC the
set of all 4-cycles inG. Hence, by adapting the integer linear program
(2.22) to Min-FVS

APPLICATIONS OF LP TO APPROXIMATION ALGORITHMS 23

References

1. Dinitz, Michael. 601.435/635 Approximation Algorithms, 2019.
https://www.cs.jhu.edu/ mdinitz/classes/ApproxAlgorithms/Spring2019/
Lectures /lecture19.pdf

2. Du, Ding-Zhu, Ker-I Ko, and Xiaodong Hu. Design and Analysis of Approxi-
mation Algorithms, 62, Springer, New York, 2012.

3. Goemans, Michel X., and David P. Williamson, The Primal-Dual Method for
Approximation Algorithms and its Application to Network Design Problems, in
Approximation Algorithms , 1997

4. Korte, Bernhard, and Jens Vygen. Combinatorial Optimization , Springer,
Berlin, 2000.

5. Vazirani, Vijay V. Approximation Algorithms , Springer, Berlin, 2011.
6. Zuylen, Anke van. Linear programming based approximation algorithms for

feedback set problems in bipartite tournaments. Theoretical Computer Science.
412 (2011), 23, 2556-2561.

