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Abstract.  Combinatorial optimization plays a vital role in areas
such as operations research and computer science. When design-
ing algorithms to solve combinatorial optimization problems, it is
important to consider both their accuracy and e ciency at nding
optima. However, many of the natural combinatorial optimiza-
tion problems that arise are known to be NP-hard, so hope for
polynomial-time algorithms is slim. By easing the requirement of
nding true optimal solutions, approximation algorithms provide a
framework for balancing optimally and runtime. In this paper, we
explore how approximation algorithms can be created for various
NP-hard problems by adapting techniques from linear program-
ming.

1. Introduction

A combinatorial optimization problem can be described as

minimize (or, maximize) c(Xy;X2:::;Xn)
subject to (X1;X2::05X%p) 2

where R" is called thefeasible region , andc: ! R s an
objective function to be optimized. We say that anyx 2 is a
feasible solution to the problem.

To motivate a framework for describing problems in combinatorial
optimization, we will de ne a set of optimizations problems known as
Minimum Weight Vertex Cover. We rst de ne a concept in graph
theory.

De nition 1.1. Let G = (V;E) be a graph withV = [n] and let
C V. Cis avertex cover if for any fi;jg 2 E, eitheri 2 C or
j2C.

Example 1.2. Minimum Weight Vertex Cover (Min-WVC)

Given a graphG = (V; E) with non-negative weight functionc: V !

R*, nd a vertex cover of minimum total weight.
1
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Note that Min-WVC is not just a single combinatorial optimiza-
tion problem, but really an in nite set of combinatorial optimization
problems: there is a di erent combinatorial optimization problem for
each di erent choice of graphG and cost functionc. We would like to
de ne a framework that captures this idea.

We say that a class of combinatorial optimization problems is a
set of optimization problems that share a common structure and can
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weaker de nition which is used in practice to analyze the performance
of approximation algorithms.

De nition 1.4. Letk 1. A algorithm A is ak-factor approxima-
tion for if for any instance |,

A(l) k opt(l) (1.1)
if is a class of minimization problems, and
opt(l) k A(l) (1.2)

if is a class of maximization problems.
Consider the minimization form rst of the k-factor approximation.
If we divide by opt(l) on both sides of (1.1), then we obtain
A(l)
opt(l)
This happens to look very similar to the de nition of the performance

ratio. Because we are only looking for an upper bound (as opposed to
the least upper bound) of the ratios ofA(l )=op{l ), calculating opt(l )
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allows one to de ne a cost functionc and a set of linear inequality
constraints that will de ne . For the majority of the paper, we will use
combinatorial optimization problems that arise in graph theory, which
can be converted into integer linear programs quite naturally. Once the
problem is converted into one of these programs, we can take advantage
of the rich theory and methods from integer and linear programming
to create an approximation algorithm. Two of these methods we will
explore arerelaxation and the primal-dual scheme

Relaxation involves increasing the size of the feasible region to
some , where nding the optimum in can be found in polyno-
mial time. The optimal solution in can then be converted, usually
through some sort of rounding technique, into a feasible solution in
, which will be an approximate solution to the original optimization
problem. To ensure the approximation algorithm runs in polynomial
time, it is important to make sure that rounding can also be done
in polynomial time. To analyze an approximation algorithms perfor-
mance, the key will be estimating the loss in optimality that is gener-
ated when converting the optimum in to a feasible solution in .

To show how ak-factor approximation can be obtained, we will use
the following analysis. Suppose an instanck of is the problem
c(X ) = miny, c(x). Now we relax the problem to and let
| © denote the instance of the problem that gives(y ) = min, c(y).
Lastly, we roundy to somex” 2 . We summarize the setup with
the gure below:

Then since and we are minimizing over both sets, it follows that
c(y) c(x). Hence

c(x?)  o(x?)
cx) cy)

To use the notation from the beginning of the introduction, we have
that A(l1) = c(x?), opt(l) = c(x ), and opt(1 ) = c(y ) and so
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A(l) A(l)
opt(l) opt(l19

Since we are able to obtairopt(l 9 in polynomial time, if we nd a k
such that

(1.3)

A(l)

opt(l19
for any I, then by (1.3), we have thatA(l1) k opt(l) and soA is
a k-factor approximation for the class of problems . We can repeat

the above analysis for the maximization problem as well and obtain a
similar conclusion.

2. Linear Programming

2.1. Preliminaries. A nice class of optimization problems are ones
where the cost functionc is linear, and is the intersection of linear
half-spaces. These type of optimization problems can be formulated
into what are known asLinear Programs (LP). If only integer values

in are allowed, then it is called an Integer Linear Program  (ILP).
We will see that Min-WVC as well as several other combinatorial
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We will now transform Min-WVC into an ILP. Let G = (V;E) and
V =[n]. If C V is the vertex cover with minimum weight, de ne

- 1 ifi2C
' o0 ifizgacC
SinceC is a vertex cover, for any edgéi;j g 2 E, we must havei 2 C

orj 2 C and sox; + x; 1. Sincec(i) is the cost of including vertex
i in the vertex cover, the ILP for Min-WVC can be stated as follows.

X

minimize c(i)X;
i=1

subjectto x;+x; 1 fi;jg2E
xi2f0;1lg 12V
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Proof. To do this, we will construct a sequence of instancesg, where
A(l)=0op((l,) becomes arbitrarily close to 2.

Let C, denote the cyclic graph oh vertices forn 2 N. One can think
of this as ann-gon. Then take instancd  to be Cyc.; together with the
weight functionc(i) = 1 for everyi 2 V. Since the weight of each vertex
is the same and the graph is cyclic, it follows that an optimal vertex
coverisC = f1,;3;5;:::;2k+1g, all odd vertices. Hencept(ly) = k+1.
But, if we convert the instancely into the integer linear program (2.2)
and solve the relaxation (2.3), we obtain thatx; = % for everyi 2 V.
Hence Algorithm 1 rounds allx; to 1, and soA(lx) = 2k+1. Therefore,

A(l) _ 2k+1
opt(l,) ~ k+1

If we let k ' 1 , it follows that r(A) 2. So, sincer(A) 2 as
previously said, it follows thatr(A) = 2.

Are there approximation algorithms forMin-WVC that have a bet-
ter performance ratio than 2? In other words, a (2 )-factor approx-
imation for some 2 (0;1). In fact, if the Unique Games Conjecture
is true, which relates to the approximability of various problems in
Computer Science, then there are no polynomial-time algorithms with
performance ratio better than 2! So, not only is it hard to nd exact
algorithms to solveMin-WVC in polynomial time, it is hard to nd
goodapproximation algorithms for Min-WVC in polynomial time!

2.2.2. lterated Rounding.

One issue that may present when implementing threshold rounding for
some integer linear program is that rounding down a combination af
may lead to a violation of one or more constraints. To address this issue,
rounding can be performed in iterations to ensure that constraints are
never violated. We will introduce the Minimum Generalized Spanning
Network Problem to illustrate this method. First, we introduce some
de nitions and lemma from graph theory which will be helpful for the
problem de nition and construction of the integer linear program.

De nition 2.4. Given a graphG = (V;E) andk 2 Z. G is k-edge-
connected if G°= (V;EnF) is connected for anyF  E with jFj<Kk.

De nition 2.5. Let G=(V;E). A cut of G, denoted by S;VnS) for
some; & S V, is a partition of V. The cut-set of a cut (S;V nS),
denoted by (S), are the set of edges il with one vertex in eachS
andV nS.
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Example 2.6. Generalized Spanning Network (Min-GSN)

Given a graphG = ( V; E) with non-negative cost functionc: E ! Z*
on edges andk 2 Z, nd a k-edge-connected subgraph of minimum
weight.

Lemma 2.7. G is k-edge-connected if and only if g(S)] k for any
cut (S;VvnS).

Proof. Assume that there exists a cut ;V nS) such that j ¢(S)j =
| < k. Then deleting thesel edges fromF makes the subgraphG°®
disconnected, which means thaG° can not bek-edge-connected.
Suppose thatG is not k-edge-connected. Then there exists some
F  E with jFj < k such that G°= (V;E nF) is disconnected. Let
(Hy;:::;Hy) be the connected components dB°. Let F;  F denote
the set of edges with one vertex i, and one inH; for i 6 1. Then
F1= &(S) F whereS is the set of vertices in componenH;. We
found a cut (S;V nS) with j ¢(S)] <k.

We rst convert Min-GSN into an integer linear program. LetG®=
(V; F) denote the optimal subgraph, wheré& E. Note that G°can be
determined solely by knowing. Hence, to nd the optimal subgraph
we need only determind=. Denote

1 ife2F
Xe 1=
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De nition 2.8. Letf : 2V ! Z. We say thatf is weakly supmodular
if f(V)=0andforany A;B V

f(A)+f(B) f(AnB)+ f(BnA)

or
f(A)+ f(B) f(A[ B)+f(B\ A)
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] Algorithm 2 Iterated Rounding Approximation for Min-GSN
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Now we repeat this proceis again but v)\éith iteratiom =t 3 to obtain
A(l) c(e) +3 c(e)xy, 3

e2F; 2 e2F¢ »

By, repeating until going )zzlll the way gj(own toi =0,
o(e)+3  o(e)x

e2 F() e2 Et
X

=3 cex? 3 opt(l)

e2E

Hence Algorithm 2 is a 3-factor approximation.

2.2.3. Random Rounding.

Round fractional values randomly to an integer. We can obtain pretty
good expected performances, and the algorithms can be derandomized
in practice using conditional expectation.

De nition 2.11. Given a graphG = (V;E), F E is anedge cut
if G°= (V;EnF) has two connected components.

Example 2.12. Minimum Feasible Cut (Min-FC)

Given a graph G = (V;E) with edge weightc : E ! R*, a vertex
s 2 V, and a setM of pairs of vertices inG, nd a subset of V with

the minimum-weight edge cut that containss but does not contain any
pair in M.

We will rst transform Min-FC into an integer linear program. Let
S denote the optimal subset of vertices an& be the minimum-weight
edge cut. Let

_ 1ifi2s
Yi= 0 ifizs
. 1 ife2F
e~ 0 ifexF

To ensure that S does not contain any pair of vertices irM, for any
fi;jg2 M
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Xe = 0 if and only if (yi;y;) = (0:;0) or (yi;y;) = (1;1). We can
simplify this condition to X j yi Y;j. This inequality can then be
decomposed into two constraintsxe Y y; andXe Yy Vi, to
avoid using absolute values in the linear inequality. In summary, we
can representMin-FC in the following integer linear program:

X
minimize c(e)Xe
e2E
subjectto Xe Vi Y e=fi;jg2E
Xe YV; Yvi e=fiijjg2E (2.11)
yi+y, 1 fijg2M
ys=1

ViiXe2f0;1g 12 V;e2 E
We can relax (2.11) to the following linear program:
X

minimize c(e)Xe
e2E
subjectto xe yi y; e=fi;jjg2E

Xe Y yi e=fijjg2E (2.12)
yity, 1 fijjg2M
ys =1

0 vyi;Xe 1 i2V;e2E
We can create an approximation algorithm foMin-FC as follows:

Algorithm 3 Random Rounding Approximation for Min-FC

1. Convert instancel of Min-FC into the integer linear program
(2.112)

2. Relax the constraints of (2.11) to the instance ° to form the
linear program (2.12)

3. GenerateU Unif(1=2;1) and if (I
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Xg = jyp yfj, it follows that both x§ y* vy andxf vy .
Now, we show the performance bound. By linearity of expectation,
n #
X X
E c(e)xs = o

e2E e2E
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paper. Recall Example (2.1):

minimize 31+ X,
subjectto 2;+2x, 4
X1
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To maximize the lower bound, we then generate the linear program
maximize 4y; 4y, + y3

subjectto 2; y,+2ys 3
2.14
2y1 Yy, yz3 1 ( )
yi;¥2;¥3 O

Linear program (2.14) is known as thalual of linear program (2.13).
If we recall the standard form primal
minimize c'x
subjectto Ax b (2.15)
x 0

then the dual linear program is
maximize b’y
subjectto ATy ¢ (2.16)
y O
Theorem 2.14 (Weak Duality Theorem). If x andy are feasible so-

lutions to linear programs (2.15) and (2.16), respectively, then we have
thatc'x b'y.

Proof. Sincex andy are feasible, we have that
c'x (ATyY)'x=y"Ax y'b=(y'bh'=by (2.17)

Theorem 2.15 (Strong Duality Theorem). The primal problem has a
nite optimum i its dual has a nite optimum. The optimal values
are the same.

The proof of the above theorem is not hard, but is tedious. It involves
the use of Gaussian Elimination to eliminate variables from the linear
program. We omit this from the paper.

We can use Weak and Strong Duality to derive the complementary
slackness conditions, which test whether two given feasible solutions
x and y of the primal and dual linear program are optimal. These
conditions will play a major role in the primal-dual scheme.

De nition 2.16. If x and y are feasible solutions to linear programs
(2.15) and (2.16), we say thatx and y satisfy the complementary
slackness conditions if

(Dx>0=) (ATy); =g

Qyi>0= (AX)i=h
The conditions (1) and (2) are also known as the primal and dual com-
plementary slackness conditions, respectively. We say that a constraint
is tight if equality holds.
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Lemma 2.17. x andy are feasible solutions to linear programs (2.15)
and (2.16) that satisfy the complementary slackness conditions if and
only if x and y are optimal solutions.

Proof. For any componentx; of x
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approximation algorithm will follow. We will demonstrate this idea
later on by converting the problem Minimum Feedback Vertex Set into
an instance ofMin-HS . Since performance analysis will be done for
the general problem, it will be easy to analyze the performance of the
algorithm for any instance. As usual, denote, by

1 ife2 A

Xe'= 0 ifezA

and so the integer linear program foMin-FVS can be written as
follows:

X
minimize c(e)Xe
S E
subject to Xe 1 8i2][pl (2.18)
e2T;
Xe 2 10;1g

The dual of the relaxation of the integer linear program (2.18) can thus
be written as

. . Xp
maximize
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that for all e2 E, the feasibg(e solutiony satis es
yi c(e)
i6k:e2T;
Then the maximum that y, can be while ensuring thaty is still feasible
is the distance to the "closest" constraint. In other words,
_ X
Yk = Tzlpk Ce | Yi
i6k:e2T;
We then repeat this process untik is a feasible solution. Formally, the
primal-dual scheme can be constructed as follows:

Algorithm 4  General Primal-Dual Scheme foMin-HS

1. Lety=0and A =

2. While there exists somex 2 [p] such that A\ Ty = p

3 Increaseyy until there is somee 2 Ty such that ., yi = c(€)
4. A  Alf e

5. Output A

To demonstrate how the algorithm works, we give the example below.

Example 2.19. LetE = f1;2,3;4;59; T, = f1;29, T, = f2,3g, T3 =
f1;4;5g, and lastly de ne c¢(e) = eforany e2 E. Then, it is easy to
see that the optimal hitting set isA = f1;29. By applying the general
dual program formulation (2.22) to this instance ofMin-HS , we obtain
the following linear program:
maximize y;+ Yy + Y3
subjectto y;+vys 1

yity: 2

y, 3 (2.20)

y: 4

y3 5

y1;y2;¥s O
Now we begin the algorithm. Start withy = (0;0;0) andA = ;.

Iteration 1 : SinceA\ Ty = ; forall k 2 f 1;2; 3g currently, suppose
we begin by choosingk = 1. Note that since y; is in the rst two
constraints of (2.20) and all components oy are zero, the maximum
we can increasg; to without violating any constraints isy; = 1. When
we do this, the rst constraint, which corresponds toe = 1, becomes
tight. Hence, we adde=1to A and soA = f1g.
Iteration 2 : Since 12 T; and 12 Ts, the only set not hit yet is T».

Hence, we are only left to choosk = 2. Note that since y, is in the
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second and third constraints of (2.20) and/; = 1, the maximum we
can increasey, to without violating any constraints is y, = 1. When

we do this, the second constraint, which corresponds &= 2, becomes
tight. Hence, we hade=2 to A and soA = f1;2g.

Since all theTy are hit, we have found an approximate solution to
the problem: A = f1;2g. In this case,A(l) = opt(l). However, if we
chose a di erentk instead ofk = 1 in the rst iteration, we would have
ended up with a non-optimal solution as our approximate solution.

Theorem 2.20. Let k = maxi[yjTij. Algorithm 4 is a k-factor ap-
proximation for Min-HS .

Proof.

X

A= ce)xe
e2EX
= e
e2A

But edge e was only added to the sefA when the caogresponding dual
constraint in (2.22) was tight. In other words,c(e) = ;... Vi, Where

the y; are the values of the dual solution after the algorithm ends.

Hence,
X X

A(l) = Yi
e2A i:e2T;
We can then rearrange the summation in the above expression

X X
Al) = Yi
i=1 ee2Ti\ A
Xp . .
= JTi\ Ajy
i=1
Let kK = maxiz[pjTij. Then sincejTi\ Aj | Tij Kk,

xP
kY
p i=1
Recall that P, i is the objective function ofthe dual linear program
(2.22), and so by the Weak Duality Theorem ., y;  opt whereopt

is the optimal value of the relaxation of (2.18). It follows that
X
c(e)xe k opt
e2E
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and so Algorithm 4 is ak-factor approximation with k = maxizyjTij

We will now show how we can transform an optimization problem
from graph theory into an instance ofMin-HS , even if it may not look
like one at rst. The problem we will use is Minimum Feedback Vertex
Set. In order to give the problem de nition, we include some prelimi-
naries from graph theory which will be helpful in the construction.

De nition 2.21. Let G = (V;E) be a directed graph. C  V is
called afeedback vertex set if the subgraph generated by removing
all vertices inC (as well as edges that contain vertices i€) is acyclic.

De nition 2.22. A (directed) graph G = (V; E) is bipartite if V can
be partitioned into two sets such no two vertices in the same partition
are adjacent.

De nition 2.23.  SupposeG is a bipartite graph, with (S; V nS) being
the partition of vertices. G is abipartite tournament  ifforanyu2 S
andv 2 V nS, either (u;v) 2 E or (v;u) 2 E, but not both.

Example 2.24. Minimum Feedback Vertex Set (Min-FVS)
Given a bipartite tournament G = (V;E) with non-negative vertex
weightc:V ! N, nd a feedback vertex set of minimum weight.

The following Lemma will be the key tool which will connectMin-
FVS to Min-HS .

Lemma 2.25. A bipartite tournament G = (V;E) is acyclic if and
only if it contains no cycle of length 4.

Proof. The forward direction is trivial. If the tournament is acyclic,
then in particular, it can not contain any cycles of length 4.
Now suppose that there exists a cycle i®. Let C be a cycle having

that m = 4 by showing all other possibilities ofm give contradictions.
SinceG is bipartite, we need only considem that are even. Ifm = 2,
then this does not give a valid cycle, as this means thaw{;v,) and
(v2;vy1) are both edges inG, which contradicts that G is a bipartite
tournament. Suppose thatm 6. Then sinceG is a bipartite tourna-
ment, there must exist some edge between and vy,, either (vs;vy,) or
(vm; V3), but not both. First suppose that the edge is {n;Vvs). Then

that C is minimal. Suppose the edge is/§; Vin). Then (vy; V2; V3; Vin; V1)
is a cycle of length 4, which contradicts thatC is minimal. Hence, if
G is acyclic, there must be no cycles of length 4.
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Constructing the integer linear program forMin-FVS  will be straight-
forward if we use Lemma (2.25). Note that in this case, the ground set
is V and the hitting sets are all 4-cycles in the graplés. Denote C the
set of all 4-cycles inG. Hence, by adapting the integer linear program
(2.22) to Min-FVS
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