ON THE DISCRIMINANT OF THE HECKE RING, Ty, AND ITS
INDEX IN THE RING OF INTEGERS OF Tx Q



THE HECKE RING



THE HECKE RING 3

_a(@z+d) +b(c"z + d’)

~ c(@%z + b)) +d(c’z + dY)

_ (a@’ +bc")z + (ab’ +bgd [CabD]TI/F13 6.9738 9.9626 Tf 3.8740




4 THE HECKE RING
Example 2.13. Examples of weakly modular functions include constant functions

and Eisenstein series, which are de ned in De nition [2.18]

Corollary 2.14. The only weakly modular function of odd weight is the zero func-
tion.

1 0

Proof. LetA= " . and (2) a weakly modular function of odd weight k.
[ iti z+0
Using De nition [2.12( and that Az = o 1 =72
f(z) = f(Az)
— 1 0
=fC v 1 2
= ( D*F(2):

Clearly, if k is odd, then f(z) = 0.

Let T be a weakly modular function. By (2) in the equivalent characterization
of weakly modular functions in De nition f(z+1) =f(2);8z 2 H. Because
of this, f is equal to some function g(q) where q = €2 % and if f is holomorphic,
then g(q) is holomorphic on the unit disk minus the origin. Using the equality
jaj = e2 'm@ we see that g ¥ 0 if and only if Im(z) ¥ A (the previous para-
graph is due to [2, pg. 3]).

Thus, when T extends meromorphically (holomorphically) function at the origin,
we say it is meromorphic (holomorphic) at in nity. By \extends meromorphically
(holomorphically) at the origin,” we mean if there exists some meromorphic (holo-
morphic) funtion h on the unit disk such that h(z) = g(q) on the unit disk minus
the origin.

De nition 2.15. Let k 2 Z and T a weakly modular function. f is called modular
if f is holomorphic on H and at in nity, where we consider in nity to lie far in the
imaginary direction.

With this, one can characterize a modular form of weight k as a series

X
f(z) = an(z p)™; a2cC (2.6)
n=0
for all p 2 H, and supposing the second condition from the equivalent character-
ization of weakly modular in De nition [2.12] is satis ed, one can write f(z) as a
function of q = e 2. Thus, a modular form of weight k is given by

x X _
f(z)= anq"=  ane® " 2.7)

n=0 n=0
which converges absolutely for jgj < 1.
De nition 2.16. [2, De nition 1.1.3] A modular form is called a cusp form if ag =

0 in its g-expansion; equivalently, a modular form is a cusp form if limjy,;y s 1 f(2) =
0.
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It’s well known that the space of modular forms of weight k and the space of
cusp forms of weight k over the full modular group (commonly denoted M (SL»(Z))
and Sk (SL2(Z)) respectively) are vector spaces over C, and that Sk(SL,(2)) is a
subspace of My(SL2(Z)). One could also characterize the Spags of cusp forms of
weight k as the kernel of the map : My(SL,(Z2)) ¥ C by : nl=0 anq" A ap.

Remark 2.17. As in [2, pg. 4], one typically denotes the space of modular forms

M
M(SL2(2)) =  Mk(SL2(2));
k2z

which is a graded ring (the product of two modular forms of weight k and weight
k" modular forms is a form of weight k + k).
In addition, the space of cusp forms

M
S(SL2(2)) = Sk(SL2(2))
k=0

forms a graded ideal in M(SL2(2)) ([2, pg. 6]).

De nition 2.18. Let k > 2. The function
x 1

Gk(z) = (CZ + d)k

(c;d)222n(0;0)

is called the Eisenstein series of weight k, \A‘Jg,ere G (1) = 2 (k), where denotes
the Riemann zeta function given by (k) = é';l 1=4* (see [7l, Proposition 4]).

(2.8)

Fact 2.19. [Z, pg. 5] The Eisenstein series of weight k for all k 2 Z~3 is a modular
form of weight k, and if one writes it in its g-expansion,

<
G(@)=  anq™;

with g = e? 2, then G, (0) =2 (k) where is the Riemann zeta function.

The Eisenstein series, G, is commonly normalized in two di erent ways: the
rst normalizes the constant term and the second normalizes the coe cient of g in
the g-expansion for G,.. The former will is denoted Ex and the latter is denoted Gy.

The normalized Eisenstein series of weight k, Gy, can be expressed in the fol-
lowing way:

1 X
C@) =5 @ K+ k 1(n)g" (2.9)
n=1

where ¢ 1(n) =

mj
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P

where ¢ 1(n) = m* 1 and By represents the k™ Bernoulli number. This
mjn
m=0

expression for Ex uses the identity Bikk = ﬁ
De ning the forms f1(z) = 60G4(z) and f,(z) = 140Gg(z), one arrives at
what is commonly known as the discriminant function, :H ¢ C, given by
(2) = (f1(2))?  27(f2(2))? ([2, pg. 6]) which is a modular form of weight 12
(as (f1(2))® and f,(z))? are forms of weight 12). It is easy to check that the rst
term in the g-expansion for is zero, and so by De nition we conclude that
(z) is a cusp form. We verify in the proof of Theorem that is not the
zero function and is zero nowhere except at in nity.

It is often useful normalize the coe cient of q in the g-expansion of , which we
will denote as  and is described in the following way:  (z) = (I=1728)(E§  E2).
Since E4 and Eg have only rational coe cients, it follows that  does as well.

De ning allows one to develop another common modular function, j: H ¥ C

3

given by j(z) = 1728 (fl(zg

since J(Az) = j(2);8A 2 SL»(Z) ([[2]]). Since the only zero of is at in nity, one

observes that j has a simple pole at in nity (which shows why it is not a modular
form).

. The j function is known as the modular invariant

Lemma 2.20 ([7, Theorem 3]). Some notation from the theorem in [7] is used.
Let p 2 H, let f be a modular form, and let G denote the full modular group. Let
ordp(F) be the integer s for which f=z p)° is nonzero. If f is a nonzero modular
form of weight k, then the following formula is satis ed:

>
ordq (F) + %ordi(f) + %ord NOEs ordp(f) = ka2 (2.11)
p2H=G
. >
where 3 = e ™= is a third root of unity, and where means to take p not in

the equivalence classes of neither i nor 3.

Note that as T is a modular form, it has no poles. In particular, ord4 (f); ord,(f) >
0; 8p 2 H=G.

Theorem 2.21. [/, Theorem 4]
(1) If k <0 or positive and odd, or if k = 2, then Mg(SL2(2)) = f0g.
(2) Multiplication by gives an isomorphism between My 12(SL2(2)) and Sk(SL2(2)).

Proof. The following proof is due to [[7], and we will be using some of their nota-
tion. Let f be a modular form of weight k, and again let G denote the full modular
group. Since the left hand side of Formula [2.1T] is nonnegative for modular forms,
k must be nonnegative and hence the only modular forms of negative weight are
the zero function.

If k is positive and odd, Corollary [2.14] showed that the only forms satisfying
this are also the zero function.
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If k = 2, then the right hand side of Formula equals 1=s. Multiplying each
side by 6 gives:
>
6ord4 (f) + 3ord;(f) + 2ord ,(f) + 6 ordp(f) = 1:
p2H=G
But ord4 (F); ordy(f) 2 Z=0;8p 2 H=G, thus giving us a sum of nonnegative in-

tegers equal to 1, which is impossible. Thus, any modular form of weight 2 is the
zero function. This proves (1).

For the sake of brevity, let a = ord4 (f);b = ord;(f), and ¢ = ord ,(f). Recall
that the discriminant function = (60G4(z2))® 27(140Gg(2))?. Since G, and Gg
are modular forms, they satisfy Formula [2.1I] Moreover, Iettingﬂ&: 4 or 6 makes

the right hand side of Formula|2.11an element of QnZ and so $2H=G ordp(T)
must be zero. Applying the Formula to G4 and multiplying through by 6, we have
6a + 3b+2c = 2:
Clearly, the only solution is (a;b;c) = (0;0; 1).
Similarly, applying the formula to Gg and multiplying through by 6, we have
6a+3b+2c=3:
Clearly, the only solution is (a;b;c) = (0;1;0). Together, this tells us G4 has one

zero at 3 and Gg has one zero at i, and so cannot be the zero function because
it is not zero at i. We’ve already seen that is a cusp form of weight 12, and so

applying Formula to gives

l+b+c+ ordp(f) =1
p2H=G

>
implies thatbh = ¢ = $2H=G ordp(f) = 0 and proves that is nonzero on H

except at in nity (in fact, it proves it has a simple zero at in nity).

Let h 2 Sk(SL2(Z)) and g = h= . Since h is a cusp form, it has a zero at
in nity. Since has a simple zero at in nity and nowhere else, g is holomorphic
on H and at in nity. Clearly, g has weight K 12. Thus, g 2 Mg 12(SL2(Z)) and
(2) is proven.

Corollary 2.22. If k = 0;4;6;8; 10, then the space of modular forms of weight k
is one dimensional with gener98
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respectively shows that dim(My(SL2(Z))) = 1 and such nonzero forms generate
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Proof. By Theorem for any k 2 Z~o, Mk{SL2(2)) has a basis fG5GRg with
4a + 6b = k. By construction, M(SL2(2)) = k1:0 My (SL2(2)), so G4 and Gg
certainly generate M (SL;(2)).

Corollary 2.25. [7, Corollary 1] Let k > 0 even. The dimension of My(SL»(Z))
can be computed as follows:

bk=12¢ ifk 2 mod 12

dim(MkGL2N = o cv 1 ifke6 2 mod 12

Proof. The following proof is due to [2]. This is obviously true for even k with
0 6 k < 12. Note that when k > 2 and even, My (SL,(2)) & f0g, so the map in
Corollary [2.22] is onto.

Theorem[2.21]proved that My (SL2(Z)) = Sk+12(SL2(Z)), and the proof of Corol-
lary yielded that dim(Sk+12(SL2(Z))) = dim(My+12(SL2(Z2))) 1. Thus,
dim(Mg+12(SL2(2))) = dim(M(SL2(Z))) +1. Replacing k by k+12 in the above
formula yields the same.

Although in Corollary [2.24we only have a result about the basis for My (SL2(2)),
Theorem 4 in Chapter 10 of [6] gives a more general result about the basis of
M (SL2(2)), produced below (omitting the proof).

Theorem 2.26. [6, Chapter 10, Theorem 4] A basis for M (SL2(Z)) with coef-
cients in Z (which is also a basis for M\ (SL2(Z)) with coe cients in C) is:

(1) Ifk 0mod 4; then =fEZ Pgwith 4a+ 12b = k:
(2) Ifk 2 mod 4; then =fEsEZ Pgwith4a+12b=k 6:

3. Congruence Subgroups
De nition 3.1. [Z, pg. 13] Letn 2 Z
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Proof. We follow the proof in [2, pg. 13], and we will show successive normality
separately: that is, we rst show normality of (n) in 1(n), then normality of

1(n) in - o(n).

De ne a map
7 o(n) ¥z,

3 2 1(n),

”(A) = b(mod n):

where for any A = 2
We have,
ker(?)=fA 2 1(n)j”(A) 0 (mod n)g
=fA2 (n)jb 0 (mod n)g
= (n):

Since ker(?) is always a normal subgroup of ;(n), this shows that (n) 1(n).

De ne another map
70 oo(n) T (Zn)

a by )
C1 dl 2 O(n),

where for any B =
> (B) =d; (mod n):
We have,
ker(? )=fB 2 o(n)j” (A) 1 (mod n)g
=fB2 o(n)jd; 1 (mod n)g
By de nition of SL,(Z); det(B) =1, so ad = 1, implying that ad 1 (mod n). If

we require thatd 1 (mod n),thena 1 (mod n) aswell. Then ker(” ) is exactly
1(n). Again, as ker(” ) is normal in o(n), we have shown 1(n) o(n).

Corollary 3.4. [2, pg. 14] Let (n); o(n); 1(n) be de ned as in Equations (,
(B-2), (B.3) respectively. Then, [ 1(n): ()] =n; [ o(n): 1(n)]= (n), where

(n) is the Euler totient Function.

Proof. The maps de ned in Proposition (3.3), > and ” , are clearly onto maps.
Using the First Isomorphism Theorem together with Proposition (3.3), we have
that 1(n)= (n) = Z, which impliesthatj 1(n)= (n)j=[ 1(n): (nN)]=jZ,j=n.
Similarly, we have that j o(n)= 1(N)j=1[ o(n): 1(N)]=jZn) j= (n).

De nition 3.5. [Z, pg. 164] Let 1; »
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De nition 3.6. [2, pg. 14] Let A = ? g 2 SL,(Z). The factor of automorphy
J(A;z) 2 C for z 2 H is given by
j(A;2) =cz+d:

De ne the weight k operator, f[A]x, on functions f: H ¥ C by
(FIAI)(2) = j(Ai2) “F(Az); A 2SL2(2): (3.4)

The previously de ned weight k operator f[A]x can be generalized to matrices
B 2 GL, (Q) by (f[Blk)(z) = det(B)X j(B;z) *f(Bz); A 2 SL,(Z): This is in
fact a generalization since this reduces to our de nition when using matrices in
SL2(2) (by de nition, they always have determinant equal to 1).

Remark 3.7. In De nition (3.6, note that the functions on which f[A]x operates are
not necessarily weakly modular; we can actually use the previously de ned operator
f[A]k on functions f : H ¥ C to form an equivalent de nition of weakly modular:
a function is weakly modular of weight k if f[A]x  f; 8A 2 SL,(Z): This "new"
de nition clearly coincides with De nition [2.12]

De nition 3.8. [2Z, pg. 165] Let 1; 2 be congruence subgroups of SL,(Z), and let
A 2 GL; (Q). De ne the weight k operator [ ;A ]k on functions f : H ¥ C by

>
fl 1A k= [ jlk (3.5)
i
where the j are orbit representatives from the action of ; on 1A 5 (see below
De nition [3.5)).

De nition 3.9. [2| De nition 1.2.3] Let be a congruence subgroup and let A =

a b
c d
to if the following three properties hold:

. We say a function f : H ¥ C is a modular form of weight k with respect

1: f is holomorphic on H:
2: f(Az) = (cz + d)*f(z);8A 2
3: f[A]k is holomorphic at in nity 8A 2 SL,(2):
As in [2, pg. 17], we denote the space of modular forms of weight k with respect

to as Mg( ). Moreover, Sk( ) are the cusp forms of weight k with respect to
The space of modular forms with respect to is the set

M
M()=  Mk()
k=0

which forms a graded ring. The set of cusp forms with respect to

[\
s()=s()

k=0

is a graded ideal in M( ).
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4. Hecke Operators

De nition 4.1. Consider the double coset given by .(n) 1(n), where
1

0 p
The Hecke operator, T, : M( 1(n)) ¥ M( 1(n)), is given by
To(F)(@) =1;[<1(n) 1(M]k(2)
= f[jlk
J
where j are distinct orbit representatives.

and p is a prime.

Lemma 4.2. [2, Proposition 5.2.1]
8 " #

L 1 j o
% [ . Ik; if pjn
j=o 0 p
To(F) = " # " #e #
- .
% il L) Ik + f[ a b p 0 J; ifp-n; whereap nb=1:
j=o 0 p n p 01
-

P
Proposition 4.3. Let f(z) = i=o amg™ 2 M( 1(n)) and let p be a prime not
dividing n. The e ect of the Hecke operator T, on f(z) can be characterized as
X X
Tp: amq™ A ampq™ +p
m=0 m=0 m=0

k 1 amqmp

Proof.

5. Modular Forms mod ¢

De nition 5.1. Let “ be a prime and let v- be the “-adic valuation of Q. That is,
if for any a 2 Q one writes a = “t(b=) where t 2 Z and * divides neither b nor c.
Then,

ve(a) =t
If an element a of Q has nonnegative “-adic valuation, a is said to be “-integral.

If £(2) 2 QIl
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This implies f(z) 2 Mka)) is a sum of powers of  with coe cients in F-.
Equivalently, this means Mk(§L2(Z)) F-[ =2 )**]. The reserve containment is
obvious after noting that  has integer (hence “-integral) coe cients.

From this point, unless otherwise stated, we will work in level 1 (i.e. = SL,(2))
and assume that “ > 3 is prime, since the by the previous proposition, the cases of
* =2 or 3 are trivial.

We will now introduce three di erent operators on the space of modular forms
mod “. The rst operator is Atkin’s U- operator (as in [3, pg. 255]), and it takes

M;&?I}(Z)) to itself. We denote it by U. For each of the following operators,
we describe their e ect of a modular form f(z) by describing its e ect on the g-

expansion of f(z). So, let f(z) = ,anq" 2 M(SL2(2)).

X X
MHU:  ang" T ang"
n=0 n=0
X X
G)V: aq" A anq™
n=0 n=0
(iii) anq" A nanq"
n=0 n=0
Proposition 5.5. [3| Fact 2.2] The following describe some of the relationships
between the previously introduced operators.
(i) fjvu =f; 8f 2 M\ BGL(2));
(ii) ker( ) = Im(V);
(iii) Im( ) = ker(U):
Proof.
Fact 5.6. [4, Fact 1.7] If f 2 M (BL2(2)), then w(fjV) = “w(f).

Fact 5.7. [4, Fact 1.4] The operator maps Mk(§L2(Z)) to Mk+‘ﬁ(§L2(Z)). In
particular, w(fj ) 6 w(f) + “ + 1.

Lemma 5.8. [4, Lemma 1.9] Let f 2 Mka)). Then w(fju) 6 W(f) D=+-°,
Proof.

De nition 5.9. [4, De nition 2.1] The set T g is called a system of eigenvalues
if there is some nonzero eigenform f such that fjT, = f, for all primes p.

De nition 5.10. [4, Section 3] Let Ty be the subring of Endc(Mk(SL2(Z2))) gen-
erated by the Hecke Operators. The subring T is called the Hecke ring.

De nition 5.11. [4, Section 3] Let Ry be the subring of EndF‘(Mk(§L2(Z))) gen-
erated by the Hecke Operators. The subring Ry is called the Hecke ring mod “.

Remark 5.12. The above two de nitions can be generalized to any level n congru-
ence subgroup, but for the purposes of this paper and results presented, we are
limiting ourselves to level 1.



THE HECKE RING 15

The ring Ry = Tx="Tx is an Artin ring, hence the ring Rx  F- is also an Artin
ring. As such, Rx F- has a nite number of maximal ideals and can be de-
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8

>2° ‘>13and k > 2*?
‘+rl<w(f)6 _3° 1 ‘=7or1land k >3 =

“3*+3 ‘=5and k > 32+ 3¢

Lemma 5.17. [4, Lemma 4.2] Let S!  MBL>(2)) F- be the generalized
eigenspace associated to the local component Af( in R F-. Let m;j be the unique
maximal ideal in A{<. If S’l; has a form f of lItration s with k= > s> “+ 1, then
dimAjkqﬂj (Mi=m2) > 2.

Proof.

Theorem 5.18. If we are in any of the following cases
1: *>13 and k > 2°2;
2:*=7o0r1land k>3?%
3:*=5and k > 3%+ 3

then dim -, (Mi=mf) > 2 for at least one j 2 f1;2;:::;ng.

Proof. Assume we are in one of the cases listed in the Theorem. Then, by Fact
at least one of the generalized eigenspaces of Ry~ F- must have a form f of

Itration satisfying * + 1 < w(f) 6 k=. Then by the lemma, the associated local
component(s) to said generalized eigenspace(s) must have Zariski tangent dimension
at least 2.

Proposition 5.19. Any SJ,'( contains a simultaneous eigenform f of Itration w(f)
such that w(f) 6 %+ *.

Proof. If
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Proof. 1. If A'is a local Artin ring, then principal ideal ring (PIR) is equivalent to
having Zariski tangent dimension less than or equal to 1.

2. Ok is isomorphic to a nite direct product of Dedekind domains.

3. Rk = Tk=‘Tk.

The proof is by way of contradiction, so assume that “ doesn’t divide the index
[Ok : Tk]. Then, the map : Ox=Tx ¥ Oy=Tk given by multiplication by  is an
isomorphism, and so Ox = “Oy + Tk. Note that Ty is a subring and ‘O is an ideal
in Ox. We have,
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