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Example 2.13. Examples of weakly modular functions include constant functions
and Eisenstein series, which are de�ned in De�nition 2.18.

Corollary 2.14. The only weakly modular function of odd weight is the zero func-
tion.

Proof. Let A =

�
�1 0
0 �1

�
and f(z) a weakly modular function of odd weight k.

Using De�nition 2.12 and that Az =
�z + 0

0� 1
= z,

f(z) = f(Az)

= f(

�
�1 0
0 �1

�
z)

= (�1)kf(z):

Clearly, if k is odd, then f(z) = 0. �

Let f be a weakly modular function. By (2) in the equivalent characterization
of weakly modular functions in De�nition 2.12, f(z + 1) = f(z);8z 2 H. Because
of this, f is equal to some function g(q) where q = e2�iz and if f is holomorphic,
then g(q) is holomorphic on the unit disk minus the origin. Using the equality
jqj = e2�Im(z), we see that q ! 0 if and only if Im(z) ! 1 (the previous para-
graph is due to [2, pg. 3]).

Thus, when f extends meromorphically (holomorphically) function at the origin,
we say it is meromorphic (holomorphic) at in�nity. By \extends meromorphically
(holomorphically) at the origin," we mean if there exists some meromorphic (holo-
morphic) funtion h on the unit disk such that h(z) = g(q) on the unit disk minus
the origin.

De�nition 2.15. Let k 2 Z and f a weakly modular function. f is called modular
if f is holomorphic on H and at in�nity, where we consider in�nity to lie far in the
imaginary direction.

With this, one can characterize a modular form of weight k as a series

f(z) =

1X
n=0

an(z � p)n; ai 2 C (2.6)

for all p 2 H, and supposing the second condition from the equivalent character-
ization of weakly modular in De�nition 2.12 is satis�ed, one can write f(z) as a
function of q = e2�iz. Thus, a modular form of weight k is given by

f(z) =

1X
n=0

anq
n =

1X
n=0

ane
2�niz; (2.7)

which converges absolutely for jqj < 1.

De�nition 2.16. [2, De�nition 1.1.3] A modular form is called a cusp form if a0 =
0 in its q-expansion; equivalently, a modular form is a cusp form if limIm(z)!1 f(z) =
0.
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It’s well known that the space of modular forms of weight k and the space of
cusp forms of weight k over the full modular group (commonly denotedMk(SL2(Z))
and Sk(SL2(Z)) respectively) are vector spaces over C, and that Sk(SL2(Z)) is a
subspace of Mk(SL2(Z)). One could also characterize the space of cusp forms of
weight k as the kernel of the map � :Mk(SL2(Z))! C by � :

P1
n=0 anq

n 7! a0.

Remark 2.17. As in [2, pg. 4], one typically denotes the space of modular forms

M(SL2(Z)) =
M
k2Z
Mk(SL2(Z));

which is a graded ring (the product of two modular forms of weight k and weight
k0 modular forms is a form of weight k + k0).

In addition, the space of cusp forms

S(SL2(Z)) =

1M
k=0

Sk(SL2(Z))

forms a graded ideal in M(SL2(Z)) ([2, pg. 6]).

De�nition 2.18. Let k > 2. The function

G�k(z) =
X

(c;d)2Z2n(0;0)

1

(cz + d)k
(2.8)

is called the Eisenstein series of weight k, where G�k(1) = 2�(k), where � denotes
the Riemann zeta function given by �(k) =

P1
d=1

1=dk (see [7, Proposition 4]).

Fact 2.19. [2, pg. 5] The Eisenstein series of weight k for all k 2 Z>3 is a modular
form of weight k, and if one writes it in its q-expansion,

G�k(z) =

1X
n=0

anq
n;

with q = e2�iz, then G�k(0) = 2�(k) where � is the Riemann zeta function.

The Eisenstein series, G�k, is commonly normalized in two di�erent ways: the
�rst normalizes the constant term and the second normalizes the coe�cient of q in
the q-expansion for G�k. The former will is denoted Ek and the latter is denoted Gk.

The normalized Eisenstein series of weight k, Gk, can be expressed in the fol-
lowing way:

Gk(z) =
1

2
�(1� k) +

1X
n=1

�k�1(n)qn (2.9)

where �k�1(n) =
P
mj k
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where �k�1(n) =
P
mjn
m>0

mk�1 and Bk represents the kth Bernoulli number. This

expression for Ek uses the identity
�2k

Bk
=

2

�(1� k)
.

De�ning the forms f1(z) = 60G4(z) and f2(z) = 140G6(z), one arrives at
what is commonly known as the discriminant function, �� : H ! C, given by
��(z) = (f1(z))3 � 27(f2(z))2 ([2, pg. 6]) which is a modular form of weight 12
(as (f1(z))3 and f2(z))2 are forms of weight 12). It is easy to check that the �rst
term in the q-expansion for �� is zero, and so by De�nition 2.16, we conclude that
��(z) is a cusp form. We verify in the proof of Theorem 2.21 that �� is not the
zero function and is zero nowhere except at in�nity.

It is often useful normalize the coe�cient of q in the q-expansion of ��, which we
will denote as � and is described in the following way: �(z) = (1=1728)(E3

4 � E2
6).

Since E4 and E6 have only rational coe�cients, it follows that � does as well.

De�ning �� allows one to develop another common modular function, j : H ! C

given by j(z) = 1728
(f1(z))3

��(z)
. The j function is known as the modular invariant

since j(Az) = j(z);8A 2 SL2(Z) ([[2]]). Since the only zero of �� is at in�nity, one
observes that j has a simple pole at in�nity (which shows why it is not a modular
form).

Lemma 2.20 ([7, Theorem 3]). Some notation from the theorem in [7] is used.
Let p 2 H, let f be a modular form, and let G denote the full modular group. Let
ordp(f) be the integer s for which f=(z � p)s is nonzero. If f is a nonzero modular
form of weight k, then the following formula is satis�ed:

ord1(f) +
1

2
ordi(f) +

1

3
ord�3

(f) +
X�

p2H=G

ordp(f) = k=12 (2.11)

where �3 = e
2�i=3 is a third root of unity, and where

X�
means to take p not in

the equivalence classes of neither i nor �3.

Note that as f is a modular form, it has no poles. In particular, ord1(f); ordp(f) >
0; 8p 2 H=G.

Theorem 2.21. [7, Theorem 4]
(1) If k < 0 or positive and odd, or if k = 2, then Mk(SL2(Z)) = f0g.
(2) Multiplication by �� gives an isomorphism betweenMk�12(SL2(Z)) and Sk(SL2(Z)).

Proof. The following proof is due to [7], and we will be using some of their nota-
tion. Let f be a modular form of weight k, and again let G denote the full modular
group. Since the left hand side of Formula 2.11 is nonnegative for modular forms,
k must be nonnegative and hence the only modular forms of negative weight are
the zero function.

If k is positive and odd, Corollary 2.14 showed that the only forms satisfying
this are also the zero function.
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If k = 2, then the right hand side of Formula 2.11 equals 1=6. Multiplying each
side by 6 gives:

6ord1(f) + 3ordi(f) + 2ord�3
(f) + 6

X�

p2H=G

ordp(f) = 1:

But ord1(f); ordp(f) 2 Z>0;8p 2 H=G, thus giving us a sum of nonnegative in-
tegers equal to 1, which is impossible. Thus, any modular form of weight 2 is the
zero function. This proves (1).

For the sake of brevity, let a = ord1(f); b = ordi(f), and c = ord�3
(f). Recall

that the discriminant function �� = (60G4(z))3�27(140G6(z))2. Since G4 and G6

are modular forms, they satisfy Formula 2.11. Moreover, letting k = 4 or 6 makes

the right hand side of Formula 2.11 an element of Q nZ and so
X�

p2H=G
ordp(f)

must be zero. Applying the Formula to G4 and multiplying through by 6, we have

6a+ 3b+ 2c = 2:

Clearly, the only solution is (a; b; c) = (0; 0; 1).
Similarly, applying the formula to G6 and multiplying through by 6, we have

6a+ 3b+ 2c = 3:

Clearly, the only solution is (a; b; c) = (0; 1; 0). Together, this tells us G4 has one
zero at �3 and G6 has one zero at i, and so �� cannot be the zero function because
it is not zero at i. We’ve already seen that �� is a cusp form of weight 12, and so
applying Formula 2.11 to �� gives

1 + b+ c+
X�

p2H=G

ordp(f) = 1

implies that b = c =
X�

p2H=G
ordp(f) = 0 and proves that �� is nonzero on H

except at in�nity (in fact, it proves it has a simple zero at in�nity).

Let h 2 Sk(SL2(Z)) and g = h=��. Since h is a cusp form, it has a zero at
in�nity. Since �� has a simple zero at in�nity and nowhere else, g is holomorphic
on H and at in�nity. Clearly, g has weight k � 12. Thus, g 2 Mk�12(SL2(Z)) and
(2) is proven. �

Corollary 2.22. If k = 0; 4; 6; 8; 10, then the space of modular forms of weight k
is one dimensional with gener98
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respectively shows that dim(Mk(SL2(Z))) = 1 and such nonzero forms generate
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Proof. By Theorem 2.23, for any k 2 Z>0, Mk(SL2(Z)) has a basis fGa4Gb6g with
4a + 6b = k. By construction, M(SL2(Z)) =

L1
k=0Mk(SL2(Z)), so G4 and G6

certainly generate M(SL2(Z)). �

Corollary 2.25. [7, Corollary 1] Let k > 0 even. The dimension of Mk(SL2(Z))
can be computed as follows:

dim(Mk(SL2(Z))) =

(
bk=12c if k � 2 mod 12

bk=12c+ 1 if k 6� 2 mod 12

Proof. The following proof is due to [2]. This is obviously true for even k with
0 6 k < 12. Note that when k > 2 and even, Mk(SL2(Z)) 6= f0g, so the map � in
Corollary 2.22 is onto.

Theorem 2.21 proved thatMk(SL2(Z)) �= Sk+12(SL2(Z)), and the proof of Corol-
lary 2.22 yielded that dim(Sk+12(SL2(Z))) = dim(Mk+12(SL2(Z))) � 1. Thus,
dim(Mk+12(SL2(Z))) = dim(Mk(SL2(Z)))+1. Replacing k by k+12 in the above
formula yields the same. �

Although in Corollary 2.24 we only have a result about the basis forMk(SL2(Z)),
Theorem 4 in Chapter 10 of [6] gives a more general result about the basis of
Mk(SL2(Z)), produced below (omitting the proof).

Theorem 2.26. [6, Chapter 10, Theorem 4] A basis � for Mk(SL2(Z)) with coef-
�cients in Z (which is also a basis for Mk(SL2(Z)) with coe�cients in C) is:

(1) If k � 0 mod 4; then � = fEa4 �bg with 4a+ 12b = k:

(2) If k � 2 mod 4; then � = fE6E
a
4 �bg with 4a+ 12b = k � 6:

3. Congruence Subgroups

De�nition 3.1. [2, pg. 13] Let n 2 Z



10 THE HECKE RING

Proof. We follow the proof in [2, pg. 13], and we will show successive normality
separately: that is, we �rst show normality of �(n) in �1(n), then normality of
�1(n) in �0(n).

De�ne a map

’ : �1(n)! Zn

where for any A =

�
a b
c d

�
2 �1(n),

’(A) = b (mod n):

We have,

ker(’) = fA 2 �1(n) j’(A) � 0 (mod n)g
= fA 2 �1(n) j b � 0 (mod n)g
= �(n):

Since ker(’) is always a normal subgroup of �1(n), this shows that �(n) � �1(n).

De�ne another map

’� : �0(n)! (Zn)�

where for any B =

�
a1 b1
c1 d1

�
2 �0(n);

’�(B) = d1 (mod n):

We have,

ker(’�) = fB 2 �0(n) j’�(A) � 1 (mod n)g
= fB 2 �0(n) j d1 � 1 (mod n)g

By de�nition of SL2(Z); det(B) = 1, so ad = 1, implying that ad � 1 (mod n). If
we require that d � 1 (mod n), then a � 1 (mod n) as well. Then ker(’�) is exactly
�1(n). Again, as ker(’�) is normal in �0(n), we have shown �1(n) � �0(n). �

Corollary 3.4. [2, pg. 14] Let �(n); �0(n); �1(n) be de�ned as in Equations ( 3.1),
( 3.2), ( 3.3) respectively. Then, [�1(n) : �(n)] = n; [�0(n) : �1(n)] = �(n), where
�(n) is the Euler totient Function.

Proof. The maps de�ned in Proposition (3.3), ’ and ’�, are clearly onto maps.
Using the First Isomorphism Theorem together with Proposition (3.3), we have
that �1(n)=�(n) �= Zn which implies that j�1(n)=�(n)j = [�1(n) : �(n)] = jZnj = n.
Similarly, we have that j�0(n)=�1(n)j = [�0(n) : �1(n)] = j(Zn)�j = �(n). �

De�nition 3.5. [2, pg. 164] Let �1;�2
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De�nition 3.6. [2, pg. 14] Let A =

�
a b
c d

�
2 SL2(Z). The factor of automorphy

j(A; z) 2 C for z 2 H is given by

j(A; z) = cz + d:

De�ne the weight k operator, f [A]k, on functions f : H ! C by

(f [A]k)(z) = j(A; z)�kf(Az); A 2 SL2(Z): (3.4)

The previously de�ned weight k operator f [A]k can be generalized to matrices
B 2 GL+

2 (Q) by (f [B]k)(z) = det(B)k�1j(B; z)�kf(Bz); A 2 SL2(Z): This is in
fact a generalization since this reduces to our de�nition when using matrices in
SL2(Z) (by de�nition, they always have determinant equal to 1).

Remark 3.7. In De�nition 3.6, note that the functions on which f [A]k operates are
not necessarily weakly modular; we can actually use the previously de�ned operator
f [A]k on functions f : H ! C to form an equivalent de�nition of weakly modular:
a function is weakly modular of weight k if f [A]k � f; 8A 2 SL2(Z): This "new"
de�nition clearly coincides with De�nition 2.12.

De�nition 3.8. [2, pg. 165] Let �1;�2 be congruence subgroups of SL2(Z), and let
A 2 GL+

2 (Q). De�ne the weight k operator [�1A�2]k on functions f : H ! C by

f [�1A�2]k =
X
j

f [�j ]k (3.5)

where the �j are orbit representatives from the action of �1 on �1A�2 (see below
De�nition 3.5).

De�nition 3.9. [2, De�nition 1.2.3] Let � be a congruence subgroup and let A =�
a b
c d

�
. We say a function f : H ! C is a modular form of weight k with respect

to � if the following three properties hold:

1: f is holomorphic on H:

2: f(Az) = (cz + d)kf(z);8A 2 �:

3: f [A]k is holomorphic at in�nity 8A 2 SL2(Z):

As in [2, pg. 17], we denote the space of modular forms of weight k with respect
to � as Mk(�). Moreover, Sk(�) are the cusp forms of weight k with respect to �.
The space of modular forms with respect to � is the set

M(�) =

1M
k=0

Mk(�)

which forms a graded ring. The set of cusp forms with respect to �

S(�) =

1M
k=0

Sk(�)

is a graded ideal in M(�).
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4. Hecke Operators

De�nition 4.1. Consider the double coset given by �1(n)��1(n), where � =�
1 0
0 p

�
and p is a prime.

The Hecke operator, Tp :M(�1(n))!M(�1(n)), is given by

Tp(f)(z) = f [�1(n)��1(n)]k(z)

=
X
j

f [�j ]k

where �j are distinct orbit representatives.

Lemma 4.2. [2, Proposition 5.2.1]

Tp(f) =

8>>>>>><>>>>>>:

p�1P
j=0

f [

"
1 j

0 p

#
]k; if pjn

p�1P
j=0

f [

"
1 j

0 p

#
]k + f [

"
a b

n p

#"
p 0

0 1

#
]k; if p - n; where ap� nb = 1:

Proposition 4.3. Let f(z) =
P1
j=0 amq

m 2 M(�1(n)) and let p be a prime not

dividing n. The e�ect of the Hecke operator Tp on f(z) can be characterized as

Tp :

1X
m=0

amq
m 7!

1X
m=0

ampq
m + pk�1

1X
m=0

amq
mp

Proof. �

5. Modular Forms mod ‘

De�nition 5.1. Let ‘ be a prime and let v‘ be the ‘-adic valuation of Q. That is,
if for any a 2 Q one writes a = ‘t(b=c) where t 2 Z and ‘ divides neither b nor c.
Then,

v‘(a) = t:

If an element a of Q has nonnegative ‘-adic valuation, a is said to be ‘-integral.

If f(z) 2 Q[[
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This implies f(z) 2 ^Mk(SL2(Z)) is a sum of powers of � with coe�cients in F‘.
Equivalently, this means ^Mk(SL2(Z)) � F‘[�=(2�)12]. The reserve containment is
obvious after noting that � has integer (hence ‘-integral) coe�cients. �

From this point, unless otherwise stated, we will work in level 1 (i.e. � = SL2(Z))
and assume that ‘ > 3 is prime, since the by the previous proposition, the cases of
‘ = 2 or 3 are trivial.

We will now introduce three di�erent operators on the space of modular forms
mod ‘. The �rst operator is Atkin’s U‘ operator (as in [3, pg. 255]), and it takes

^Mk(SL2(Z)) to itself. We denote it by U . For each of the following operators,
we describe their e�ect of a modular form f(z) by describing its e�ect on the q-

expansion of f(z). So, let f(z) =
P1
n=0 anq

n 2 ^M(SL2(Z)).

(i) U :

1X
n=0

anq
n 7!

1X
n=0

anlq
n

(ii) V :

1X
n=0

anq
n 7!

1X
n=0

anq
nl

(iii) � :

1X
n=0

anq
n 7!

1X
n=0

nanq
n

Proposition 5.5. [3, Fact 2.2] The following describe some of the relationships
between the previously introduced operators.

(i) f jV U = f; 8f 2 ^Mk(SL2(Z));

(ii) ker(�) = Im(V );

(iii) Im(�) = ker(U):

Proof. �

Fact 5.6. [4, Fact 1.7] If f 2 ^Mk(SL2(Z)), then w(f jV ) = ‘w(f).

Fact 5.7. [4, Fact 1.4] The operator � maps ^Mk(SL2(Z)) to ^Mk+‘+1(SL2(Z)). In
particular, w(f j�) 6 w(f) + ‘+ 1.

Lemma 5.8. [4, Lemma 1.9] Let f 2 ^Mk(SL2(Z)). Then w(f jU) 6 (w(f)� 1)=‘+‘.

Proof. �

De�nition 5.9. [4, De�nition 2.1] The set f�pg is called a system of eigenvalues
if there is some nonzero eigenform f such that f jTp = �pf , for all primes p.

De�nition 5.10. [4, Section 3] Let Tk be the subring of EndC(Mk(SL2(Z))) gen-
erated by the Hecke Operators. The subring Tk is called the Hecke ring.

De�nition 5.11. [4, Section 3] Let Rk be the subring of EndF‘(
^Mk(SL2(Z))) gen-

erated by the Hecke Operators. The subring Rk is called the Hecke ring mod ‘.

Remark 5.12. The above two de�nitions can be generalized to any level n congru-
ence subgroup, but for the purposes of this paper and results presented, we are
limiting ourselves to level 1.
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The ring Rk �= Tk=‘Tk is an Artin ring, hence the ring Rk 
 F‘ is also an Artin
ring. As such, Rk 
 F‘ has a �nite number of maximal ideals and can be de-
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‘+ 1 < w(f) 6

8><>:
2‘ ‘ > 13 and k > 2‘2

3‘� 1 ‘ = 7 or 11 and k > 3‘2 � ‘
3‘+ 3 ‘ = 5 and k > 3‘2 + 3‘

Lemma 5.17. [4, Lemma 4.2] Let Sjk � ^Mk(SL2(Z)) 
 F‘ be the generalized

eigenspace associated to the local component Ajk in Rk 
 F‘. Let mj be the unique

maximal ideal in Ajk. If Sjk has a form f of �ltration s with k=‘ > s > ‘ + 1, then
dim

A
j
k
=mj (

mj=m2
j) > 2.

Proof. �

Theorem 5.18. If we are in any of the following cases

1: ‘ > 13 and k > 2‘2;

2: ‘ = 7 or 11 and k > 3‘2 � ‘;
3: ‘ = 5 and k > 3‘2 + 3‘

then dim
A
j
k
=mj (

mj=m2
j) > 2 for at least one j 2 f1; 2; :::; ng.

Proof. Assume we are in one of the cases listed in the Theorem. Then, by Fact
5.16, at least one of the generalized eigenspaces of Rk 
 F‘ must have a form f of
�ltration satisfying ‘ + 1 < w(f) 6 k=‘. Then by the lemma, the associated local
component(s) to said generalized eigenspace(s) must have Zariski tangent dimension
at least 2. �

Proposition 5.19. Any Sjk contains a simultaneous eigenform f of �ltration w(f)
such that w(f) 6 ‘2 + ‘.

Proof. If
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Proof. 1. If A is a local Artin ring, then principal ideal ring (PIR) is equivalent to
having Zariski tangent dimension less than or equal to 1.
2. Ok is isomorphic to a �nite direct product of Dedekind domains.
3. Rk �= Tk=‘Tk.
The proof is by way of contradiction, so assume that ‘ doesn’t divide the index
[Ok : Tk]. Then, the map � : Ok=Tk ! Ok=Tk given by multiplication by ‘ is an
isomorphism, and so Ok = ‘Ok + Tk. Note that Tk is a subring and ‘Ok is an ideal
in Ok. We have,
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