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Abstract

This paper was written to ful�ll the upper-level writing requirement
for a Honors degree in Mathematics at the University of Rochester.

In this paper we develop the theory of fractal dimension, introducing
several de�nitions of and concepts related to the Minkowski and Hausdor�
dimensions of a set. After reporting some results from [1], we provide some
bounds on constants that in turn determine bounds on intersections of sets
of di�erent dimensions.
Issues related to the shortcomings of this approach are discussed, in partic-
ular the fact that all the theorems hold up to a factor of � in the exponent,
and how this introduces signi�cant limitations to the scope of this paper.

1 Introduction

The study of fractal geometry is usually ascribed to Mandelbrot, who coined
the term fractal in 1975 [5], although, as it's often the case in mathematics, the
idea of fractals and fractal dimension actually emerged from the work of previ-
ous mathematicians. Some of the most famous names are Weierstrass, Cantor,
Hausdor�, Fatou, Julia.

In pop culture, the idea of fractals is associated to beautiful self-similar
shapes such as the Mandelbrot set or the growth patterns of cauli
owers. There
are, however, notions of fractals that are not restricted to strictly self-similar
set. These notions usually rely on some sort of "statistical similarity" or "scale
invariance" of a set, and can be de�ned rigorously, as we shall see.

It is important to note that these generalized versions of self-similarity are
not pointless abstraction, but can be found everywhere in the world around us:
the shape of the delta of a river, or the "jagged-ness" of the coast of an island
[4], even in the behavior of prices in the stock market [1] can all be analyzed
with these tools.
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The �rst notion of non-integer dimension was proposed by Hausdor� in 1918
[3]. This de�nition, known as Hausdor� dimension, extends the usual notions
of dimension to allow for non-integer values, and is still widely used. According
to [7], the Hausdor� dimension is considered more "robust", and is treated as a
"standard".
As one would expect, the Hausdor� dimension of "usual sets", such as lines,
planes, or spheres, is exactly what one would expect. More generally, the Haus-
dor� dimension of an n-dimensional smooth manifold exists and isn.

There are other de�nitions of dimension that one can use to analyze sets. In
this paper we are going to present two of them: the Minkowski dimension, and
the discrete Hausdor� dimension.
The former is a very useful tool in concrete cases, as it lends itself well to com-
putations, but it loses some of the nice properties that the Hausdor� dimension
has.
As we shall see, this de�nition tries to capture the fact that if a d-dimensional
object is scaled by a factor of� , its volume will scale roughly as:

V � � d





The most straightforward way to elaborate on this is the Minkowski dimension,
which will be the topic of the next section.

3 Minkowski dimension

This section closely follows Ch. 2 of [2].
One way of formalizing the notion of scaling described above that of Minkowski
dimension.
There are various ways of de�ning this concept. Here we report two de�nitions,
show that they coincide and explain why both are useful.
We will start with the heuristics.

Let us introduce a handy de�nition, that will recur throughout the paper;

De�nition 3.1 ( � -cover) Given E � Rd, we say that the (at most countable)
collection of setsf Ui gi � Rd form a � -cover of E if diam(Ui ) � � and E � [ i Ui

From this point and throughout this paper we will assume that E � [0; 1]d.
This assumption doesn't really impact the main ideas presented here, but it
does simplify some proofs.



Where N � (E ) is de�ned as above.



If we now take the lim sup (lim inf) of these two inequalities as� ! 0 we see that
the left and right sides both approach the upper (lower) Minkowski dimension.

While these two de�nitions yield the same dimensions, they have di�erent
applications. The �rst de�nition is well-suited for theoretical analysis, as it
provides a minimal value without the need to construct it explicitly.
The box counting de�nition, on the other hand, is more useful for numerical



We can then de�ne the s dimensional Minkowski content:

De�nition 3.5 (Minkowski content) The upper and lower Minkowski con-
tents of E are de�ned as:

M
s
(E ) = lim sup

� ! 0
(2� )s� d � d(E (� ))

M s(E ) = lim inf
� ! 0

(2� )s� d � d(E (� ))
(10)

One can then de�ne the upper and lower Minkowski dimensions using this con-
cept:

dim B (E ) = inf f s : M
s
(E ) = 0 g = supf s : M

s
(E ) > 0g

dim B (E ) = inf f s : M s(E ) = 0 g = supf s : M s(E ) > 0g

a These de�nitions are equivalent to all the ones we've shown before, altough
we will not show that here. We will instead prove some useful bounds.

Proposition 2 We have the following inequality

P� (E )
( d)� d � � d(E (� )) � N � (E )
( d)(2� )d (11)

Proof : the fact that any � -packing of E is contained in the � -neighborhood of
E proves the �rst inequality: the LHS is exactly the d-dimensional Lebesgue
measure of the packing, so the result follows by the monotonicity of� d.

The second inequality can be proved by noting that if we replace the sets in
a � -cover with balls of radius �=2 that contain the original sets we still cover E .
If the radius is then increased to 2� we are guaranteed thatE(� ) is also covered.
The 2� bound can be easily made sharper, but this will su�ce for our purposes.
If we call these balls with radius 2� B i , 1 � i � n we get:

E (� ) � [ n
i =1 B i

By monotonicity and subadditivity of � d we get:

� d(E (� )) �
nX

i =1

� d(B i ) � N � (E )
( d)(2� )d

Thus proving the inequality.

3.2 Lipshitz functions

Here we brie
y discuss the role that Lipshitz functions play in dimension theory.
These functions are important as they preserve the Minkowski dimension of sets.
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De�nition 3.6 A function from Rn to Rm is said to be Lipshitz, or Lipshitz
continuous, if there exists a positive real numberL such that, for all x; y 2 Rn

we have:
jf (x) � f (y)j � L j



De�nition 4.2 (s-dimensional Hausdor� measure) Let E be a subset of
Rd and let H s

� (E ) be de�ned as above. Then we de�ned the s-dimensional Haus-
dor� measure of E as:

H s(E ) := lim
� ! 0

H s
� (E ) (14)

It can be shown that H s is indeed a measure (in the measure-theoretic sense)
and that it coincides with the Lebesgue measure (up to a constant factor de-
pending on s) when s is an integer.

We will now see that, for every setE , there exists a unique value ofs such
that H s(E ) is �nite.
Let Ui be a � -cover of E , and supposet > r � 0.
Then we have:

X

i

diam(Ui )t =
X

i

diam(Ui )t � r diam(Ui )r � � t � r
X

i

diam(Ui )s

It can be shown that the inequality still holds when taking the in�mum over
� -covers, to obtain:

H t
� (E ) � � t � r H r

� (E ) (15)

Note that (15) implies that if r 6= t then H t
� (E ) and H r

� (E ) cannot be both
�nite and non-zero. More concretely, suppose thatH r

� (E ) < 1 and that r < t ,
then (15) must hold for any � . By taking the limit as � ! 0, we see that the
only way to satisfy (15) is if H r

� (E ) = 0.
Similarly, if 0 < H t

� (E ), the only way to satisfy (15) is if H r
� (E ) = 1 .

We summarize the above paragraph in the following de�nition and theorem.

Theorem 1 (Uniqueness of Hausdor� dimension) For any given E � Rd,
there exists at most one real numbers > 0, such that 0 < H s(E ) < 0.
In particular, if 0 < H s(E ) < 0, and t and r are real numbers satisfying
0 < r < s < t , we haveH t (E ) = 0 , H r (E ) = 1 ,

De�nition 4.3 (Hausdor� dimension) When such a values exists such that
0 < H s(E ) < 0 we say that the setE has Hausdor� dimension s.

Theorem 1 shouldn't come as a surprise. After all, the same is true with the
usual Lebesgue measure: for example, if� d is the d-dimensional Lebesgue mea-
sure andQ2 is the two dimensional unit cube (unit square), we have� 1(Q2) =
1 , � 2(Q2) = 1, and � 3(Q2) = 0.
This captures the idea that a unit square has "unit area", "zero volume", and
"in�nite length".

While Hausdor� dimension is a very powerful tool to analyze and character-
ize subsets ofR=d, the following theorem tells us that we need a di�erent tool
to deal with countable sequences of �nite sets.
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Theorem 2 (Hausdor� dimension of countable sets) If S � Rd is count-
able, then it has Hausdor� dimension zero.

One idea that will allow us to analyze the dimension of countable sets is a
modi�cation of the Hausdor� dimension known as Discrete Hausdor� dimension.
This will be the subject of the next section.

5 Discrete Hausdor� dimension

We now introduce a very important tool in the development of the idea of
discrete Hausdor� dimension: the energy integral.

De�nition 5.1 (Energy integral) Given a �nite set Pn � [0; 1]d with jPn j =
n 2 Z+ , we de�ne the discrete r-energy ofPn as:

I r (Pn ) := n� 2
X

p6= p0

jp � p0j � r (16)

This quantity is referred to as the "energy" of a �nite point set, as it mim-
ics the electric potential energy of a �nite set of point particles with identical
charges, in the case whenr = 2.

De�nition 5.2 (Time series) A time series is a collection P of sets Pn 2
[0; 1]d with jPn j = n.
If all Pn are subsets of a setE � [0; 1]d we say thatP is a time series ofE .

De�nition 5.3 (Discrete Hausdor� dimension) Given a time seriesP =
f Pn g; n 2 Z+ , we de�ned it's discrete Hausdor� dimension dimH D (P) as:

dimH D (P) := sup f r 2 [0; d] : sup
n

I r (Pn ) < 1g (17)

Now that we have our basic ideas set up, we are almost ready to report some
results from [1], which we will then build upon.

Before we introduce the results, let us take a small digression to discuss an
issue in the de�nition of N � .

5.1 Freedom in choosing N � (E)

When proving the equality of various de�nitions of Minkowski dimension we
used the fact that we could multiply whatever de�nition of N � (E ) we chose by
a constant, sayk, as the latter would be suppressed by a log(� � 1) term:

lim sup
� ! 0

log(k � N � (E ))
log(� � 1)

= lim sup
� ! 0

log(k)
log(� � 1)

+
log(N � (E ))

log(� � 1)
= lim sup

� ! 0

log(N � (E ))
log(� � 1)

As the �rst term goes to zero in the limit.
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There is no reason to require that k be a constant: it may as well be a
function of � (call it k(� )), as long as it grows slow enough:

lim sup
� ! 0

log(k(� ))
log(� � 1)

= 0 (18)

Remark 1 k(� ) must go to zero or in�nity slower than any polynomial.

Proof : 8� > 0 there must exist a � > 0 such that 0 < � < � implies k(� ) <
C� � � � , whereC� is a constant. If we considered the lower Minkowski dimension
we would get a similar inequality: k(� ) > c� � .

This requirement is to be expected: if k(� ) behaved like a polynomial, it
would a�ect the exponent in N � � C � � � s.
We see that the property that gives the Minkowski dimension its 
exibility



The point of de�ning the discrete Hausdor� dimension is that it allows us to
compute the notion of dimension of a set by simply sampling points. Theorem
4 of [1] provides a connection between the Minkowski measure of a set and the
DHD of any of its discret subsets in the following sense:

Theorem 3 (Lower bound for I r (Pn ) - Thm 4 of FRACTALS ) Let P be
a family of point sets contained in a subsetE � [0; 1]d of upper Minkowski di-
mension s .
Then, dimH D P = r � s. If, instead, we have r > s , we have the following
quantitative lower bound:

I r (Pn ) �
s

r � s

�
C � 1

E

� r
s n

r
s � 1 �

�
C � 1

E

�
r

r � s
+

1
n

(19)

Where Pn 2 P and CE is as in (2).

Proof : see appendix.

A direct application of Thm 3. is that it constrains our ability to approximate
a fractal set with smooth surfaces. This is explain concretely by Thm 8. from
[1].

Theorem 4 (Intersection of sets with di�erent dimensions) Let P = f Pn g
be a time series with dimH D (E ) = s and let E be a subset of[0; 1]d with
dim B (E ) = r > s . Then, for every � > 0, there exists a constantC� such
that:

jPn \ E j � C� n
2

1+ r=s + � (20)

In Thm 4. P is the set we are trying to approximate with E . What it means
concretely is that if the dimension of P is greater than that of E , we will not
be able to approximate it well.
For a concrete example example, suppose we wished to approximate a set
P � R2 with DHD greater than one by a smooth line (which has UMD equal
to one). What Thm 4. tells us is that, no matter how well we approximate a
�nite subset of P, if we try to add more points most of them will lie outside of
the approximating curve.

Note the presence of� at the exponent, and of the multiplicative constant
C� .
Proof : This proof follows that of [1], while accounting for constants that in that
paper are lumped in to C� . In this case, C� is comes from the constantCE in
Lemma 1, which then ripples through the proofs.

Let P0
m = Pn \ E m = jP0

m j.
Then we have:

I r (P0
m ) = m� 2

X

p6= p0

p;p6=Pm6=Pmj

C



Where Cs is the constant for which I s(Pn ) � Cs. This exists by hypothesis, as
r > s .
We now apply Thm 3:

I r (P0
m ) � Cm

s
r � s

�
C � 1

E

� r
s m

r
s � 1 (22)

Where Cm is a constant that guarantees that:

s
r � s

�
C � 1

E

� r
s m

r
s � 1 � �

�
C � 1

E

�
r

r � s
+

1
m

Note that Cm can be taken to be arbitrarily close to 1 asn goes to in�nity.

Combining this with (21) we obtain:

Csm� 2n2 � Cm
s

r � s

�
C � 1

E

� r
s m

r
s � 1

We can use this to �nd a bound for m:

m �

 
CSC

r
s

E

sCm
(r � s)

! 1
r
s +1

n
2

r
s +1

However, recall that CE depends on� , which we have no control over, so we will
have to say

m . �

 
CSC

r
s

E

sCm
(r � s)

! 1
r
s +1

n
2

r
s +1 (23)

7 Results

In this section we report the main results of the paper. These results are esti-
mates on the value of the constantCE on sets satisfying some given properties.
In particular, the bounds are given by the Hausdor� measure, and the upper
and lower Minkowski contents of the setE .

As explained before, bounding this constant allows one to make the state-
ment of theorem 4 more precise.
Notation: in what follows we will often omit the reference to the setE . For
example, we will write N � in lieu of N � (E )

We are now ready to state our results. We will start with a bound in the
case the Hausdor� measure ofE can be computed.

Proposition 4 (Lower bound for CE ) Supposedim H (E ) = dim B (E ) = s.
Then, For any � > 0 There exist � > 0 such that 8�; 0 < � < � we have
N � > (V � � )� � s.
Where we de�ned V := H s(E ) � H s

� (E ).
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Proof :
H s(E ) = lim

� ! 0
H s

� (E ) and H s
� (E ) is non decreasing as� decreases so, given� ,

there exists � such that 8� , 0 < � < � we have V � H s
� (E ) < � ) .

H s
� (E ) > V � � (24)

By de�nition, we have

H s
� (E ) �

X

i

jUi js for any f Ugi that is a �



Once again, recognize the LHS to be as in the de�nition ofA(� ). Apply the
least upper bound proposition: for � su�ciently small:

(M s � � ) � N � � � s � 2s � 
( d)

Rearranging:

N � � � � s � (M s � � ) �
1

2s 
( d)

N � & s;d � � s � (M s � � )
(26)

We also provide a converse theorem:

Theorem 6 For � small enough we have

N � . d � � s � (M
s
(S) + � )

Where M
s
(S) is the s-dimensional upper Minkowski content ofS, and where

the constant implicit in . d is equal to 2d


( d) .

Proof :
We restate equations (9) and (11) for reference:

N2� (S) � P� (S) (27)

P� (S) � 
( d) � � d � � d(S(� )) (28)

Start from (11) with � replaced by �
2 :

P �
2
(S) � 
( d)

�
�
2

� d

� � d

�
S

�
�
2

��

Use (9) and obtain:

N � (S) � 
( d)
�

�
2

� d

� � d

�
S

�
�
2

��

Multiply both sides by
�

�
2

� s� d
= � s� d:

N � (S) � 
( d)� d � � s� d � 2� d � � d

�
S

�
�
2

��
� � s� d

Simplifying, and recognizing that the RHS is just like in the de�nition of
Minkowski content :

2� d � 
( d)N � (S) � � s � M
s
(S) + �

Finally, solving for N � (S):

N � (S) � � � s �
�

M
s
(S) + �

�
�

2d


( d)

N � (S) . d � � s �
�

M
s
(S) + �

� (29)
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8 Conclusions

In this paper we reviewed the theory of Minkowski and Hausdor� dimension,
providing several di�erent de�nitions and showing their equality and di�erent
use cases. After summarizing some results from [1], we showed how one can �nd
some bounds for the constants involved in the theorems using the Minkowski
content of the set under examination. The procedure used has a major short-
coming, in that the bounds only hold up to a factor of � in the exponent. In order
to ensure control over this factor, one has to introduce another multiplicative
constant, depending on� . This then leaves the overall constant undetermined,



Now one has to notice that
P

i
jE i \ Pn j = jPn j = n to conclude:

jf (p; p0) : jp � p0j � � gj � C � 1
E � sn2

Proof of Thm. 3.
Recall the form of the energy integral:

I r (Pn ) = n� 2
X

p6= p0

jp � p0j � r (30)

We want to use what we know about the upper Minkowski dimension ofE to
bound this expression. The only tools we have that relates the UMD of a set
to its time series is Lemma 2, so we are going to re-express (30) in a form that
will allow us to apply Lemma 2.

Start from noticing that:

jp � p0j � r = r
Z 1

0
1[0;1 ) (� � j p � p0j)� � r � 1 d�

Hence:
I r (Pn ) = n� 2

X

p6= p0

jp � p0j � r

= rn � 2
X

p6= p0

Z 1

0
1[0;1 ) (� � j p � p0j)� � r � 1 d�

(31)

The sum above is �nite, so we can swap the sum and the integral:

I r (Pn ) = rn � 2
Z 1

0

0

@
X

p6= p0

1[0;1 ) (� � j p � p0j)

1

A � � r � 1 d� (32)

Note that the sum in parenthesis just counts the number of point pairs that are
less than � apart, excluding the n pairs with p = p0 :

I r (Pn ) = rn � 2
Z 1

0
(jf (p; p0) : jp � p0j � � gj � n) � � r � 1 d� (33)

Note that the expression above is exactly what we have in Lemma 2, which

we are now going to apply: if�;
�
C � 1

E n
� � 1=s

we are only guaranteed the existence
of the n pairs p = p0. and thus:

jf (p; p0) : jp � p0j � � gj � n � 0

If, instead, � �
�
C � 1

E n
� � 1=s

Lemma 2 tells us more:

jf (p; p0) : jp � p0j � � gj � n � C � 1
E � s �p



Applying (34) to (33) we get:

I r (Pn ) � rn � 2
Z 1

(C � 1
E n ) � 1=s

�
C � 1

E � sn2 � n
�

� � r � 1 d�

� rC � 1
E

Z 1

(C � 1
E n ) � 1=s

� s� r � 1d�

� rn � 1
Z 1

(C � 1
E n ) � 1=s

� � r � 1d�

(35)

These integrals are �nite, because we are assuming thatr > s , and can be
evaluated to:

=
r

s � r

�
C � 1

E

� r
s n

r
s � 1 �

rC � 1
E

r � s
+

1
n

(36)�


