
Kolmogorov Complexity and Distance Sets: Two Notions of Set

Complexity

Elana Elman

April 26, 2024

Abstract

I introduce Kolmogorov complexity and the Erd•os distinct distance problem, describe an intu-
itive connection between these topics, and explore whether they are actually related. I construct
sets in R2 with arbitrary Kolmogorov complexity and distance set size in order to show that the
Kolmogorov complexity and the size of the distance set for �nite sets of �xed size are independent
quantities. I consider what alternative descriptions of set complexity might agree more closely
with my geometric intuition.

1 Introduction

I am interested in capturing the \structuredness" of a �nite set of points. I study two notions of
complexity, Kolmogorov complexity and the size of the distance set. Kolmogorov complexity is the
length of the shortest program that outputs a given �nite string; in the context of sets, I consider

De�nition 2.3 (Big-O) . Given two functions f and g: R 7! R, f is said to be 2 O(g) or = O(g) if
9C 2 R and x0 2 R such that

jf (x)j � Cg(x)8x > x 0:

Erd•os' original paper [1] shows that M (n) is betweenO(
p

n) and O(np
log n

). The lower bound was
gradually improved until 2015, when Guth and Katz proved M (n) is at least O(n

log n).

2.0.1 Upper Bounds

Example. Let P be n random points in the unit square. It is overwhelmingly likely that all distances
are unique andj�(P)j =

� n
2

�
2 O(n2).

Example. Let P be n points arranged evenly on a circle. Pick any of these points to calla. a is the
same distance from each of its neighbors, and the same distance from the second point on its right as
from the second point on its left, etc: all distances froma to other points in P come in pairs, except
for the single distance froma to the point directly opposite it if n is even. By symmetry, any distance
between non-a points is the same as some distance involvinga. So j�(P)j = bn

2 c 2 O(n).

ˆ Even the green triangle contains some repeated distances. Any triangle where all three side
lengths are integers�

p
n is present within the green triangle, and any integer distance�

p
n

also occurs along the top edge of the grid, so the hypotenuse of such a triangle repeats a distance
found along the top. The purple lines marked on Figure 2 are two di�erent lines of length 5: one
sits on the top of the grid and the other is the hypotenuse of a 3-4-5 triangle.

Sets of integersx; y; h with x2 + y2 = h2 are called Pythagorean triples. Any Pythagorean triple
is of the form

x = k(2ab)

y = k(a2 � b2)

h = k(a2 + b2)

where k is any positive integer and a > b [2]. Restricting to k = 1, h is a repeated distance in
the grid when 2ab �

p
n and a2 � b2 �

p
n. The number of integer grid points in this region is

O(
p

n logn)1, so the number of distinct distances in the grid is at mostO(n �
p

n logn).

Figure 2: A 6 � 6 square grid. All distances outside the green triangle are also present in the green
triangle. The green triangle contains some repeating distances: two lines of length 5 are drawn in
purple.

2.0.2 Lower Bounds

Finding any lower bound on M is less obvious. Here is Erd•os'
p

n bound:

Proof. Let P be any set ofn points in the plane. Take any a 2 P. For each other point pi in P, draw
a circle through pi centered at a. Call the number of distinct circles drawn m.

ˆ If m <
p

n, some circle must have at least

n
m

�
n

p

n
= p

n 1

points, so some hemisphere has at least
p

Time Tape Current State Next State Write Move
0 :::B 101B::: SEEK SEEK 1 R
1 :::B 101B::: SEEK SEEK 0 R
2 :::B 101B::: SEEK SEEK 1 R
3 :::B 101B ::: SEEK CARRY B L
4 :::B 101B::: CARRY CARRY 0 L
5 :::B 100B::: CARRY DONE 1 L
6 :::B 110B::: DONE

Table 1: An example run of the increment machine on the input 101

Turing machines for any particular problem aren't unique. In fact, it's possible to translate any
Turing machine into a machine with only two states by increasing the number of symbols, or into a
machine with two symbols by increasing the number of states. However, the product of the number of
states in symbols stays within a constant factor after either of these translations, so we can comfortably
use this state � symbol complexity to describe any Turing machine's complexity.

3.1.2 Programming Languages

Compared to Turing machines, real computers have additional features such as random-access memory
and limitations such as �nite memory. Turing machines are also di�cult to design and understand.
Programming languages allow simpler, human-readable descriptions of algorithms. Almost all pro-
gramming language are Turing-complete, meaning they are capable of simulating Turing machines. A
language is called Turing-equivalent if a Turing machine is capable of simulating running its programs,
and nobody has ever found a Turing-complete language which is not Turing-equivalent. It seems
extremely likely that no programming language can be more powerful than Turing machines.

For a Turing-equivalent languageL, let TL be a Turing machine that simulates a program written in
L , and let L T be a program inL that simulates execution of a Turing machine. Then languageL 1 can
simulate a program written in language L 2 by simulating the execution of TL 2 . Since these programs
and Turing machines are �nite, there exist �nite translations between Turing-equivalent languages.

De�nition 3.5 (Universal Functions). A function f is universal for a set of functionsF if f minorizes
all functions in F .

If f and g are both universal for F , then their di�erence on any x is bounded by a constant, and
any non-universal function h in F is no more than a constant less thanf . This means we can consider
only optimal descriptions relative to universal functions without worrying that other functions provide
shorter descriptions.

De�nition 3.6 (Computable Functions). A partial function f : N ! N is called computable if there
is some Turing machine which terminates with output f (n) on each input n for which f is de�ned.

Theorem 1 (A universal computable function f U exists). Proof. Let U be a Turing machine which
simulates other Turing machines. U must take two pieces of information, a description of the machine
to simulate and the input string to simulate running on. U expects this input in the format 11...10 gp:
this is l(g) 1s, then one0, then the literal description g of the desired Turing machine, then the literal
input string p. U may then use the pre�x of 1s to separateg from p and run its simulation. Let f U be
the function executed by U.

De�nition 3.7 (Kolmogorov Complexity) . The Kolmogorov complexity of a �nite string s is de�ned
as C(s) = Cf U (s). We require that the program doesn't take arguments, or equivalently that any
input to the program counts toward its length.

Theorem 2. Most strings are incompressible.

Proof. The set of n-length binary strings has 2n elements, and the set of shorter strings has 2n � 1

elements, so there are at most 2n � 1 di�erent outputs of shorter programs. Even if we optimistically
assume that each of these outputs has lengthn, at least 2n � 2n � 1 = 2 n � 1 of the 2n strings with length
n cannot be more concisely represented.

Theorem 3. Kolmogorov complexity is uncomputable.

Proof. Suppose a programK with length a takes as input a �nite string S and returns its Kolmogorov
complexity. Note that some shortest program always exists because it is at longest logS.

Write a new function Cwhich decides if a stringS is compressible:

from math import log
def C(S):

if K(s) >= log(s, 2):
return false

return true

This program is only a constant number of bits cB longer than C: B is a + cC + cB bits long.
Choosemin = 2 a+ cC + cB . Now B(min) returns a number b with K (b) > 2a+ cC + cB . On the other

hand, we just saw that b was generated by the programB(min) , which, including the length of its
argument, was at mosta + cC + cB + log 2a+ cC + cB = 2(a + cC + cB). This is a description of b which
is shorter than than K (b), the shortest possible description. This is a contradiction, so the functionK
cannot actually exist.

The above de�nitions and facts are from Li and Vit�anyi's book on Kolmogorov complexity [3],
except for the proof of uncomputability, for which I referenced Peter Miltersen's course notes [5]. The
below de�nition is my own, for purposes of comparison with the Erd•os distance problem:

De�nition 3.8 (Kolmogorov Complexity of Sets). Let A be a �nite set of integers. Index A by ai for
i from 0 through jAj, where a1 is the smallest value inA, a2 is the next smallest, etc. De�ne a string
representation of A to be the string S = \ a1; a2; : : : ajA j " with each ai replaced by its literal value.
De�ne C(A) to be C(S).

Let B be a �nite set of pairs of integers. Index these pairs by (ai 1; ai 2) for i from 1 through
jB j, where the ai s in dictionary order. De�ne a string representation of B

Of course a more time-e�cient sort is possible, but this Python program lets us more easily picture
a corresponding Turing machine.

Appending programs comes at a length cost of log of the shorter program length, which is at most
a constant for this program.

Running this sorting program after the shorter program selected byCb gives us a program forS
with the order ai that has length Cb + c for some constantc independent ofS. SinceCa is de�ned to
be the length of the shortest program producingS with order ai , Ca can't be larger than Cb + c. So
we can see that printing any order of the elements ofS is a problem in the same class of Kolmogorov
complexity as Ca .

3.1.4 Kolmogorov Complexity versus Algorithm Complexity

There are many ways other ways of measuring how \hard" a problem is.

1. The usual metric of interest is time complexity: as the size of the input increases, roughly how
many CPU cycles does the program take to run? The problem of factoring large primes is hard
in this sense. While time complexity is de�ned for speci�c programs, it is also commonly used
to describe the best known solution to a problem.

2. Another important metric is space complexity: as the size of the input increases, roughly how
much active memory does the program require? Working with adjacency list representations of
large matrices is hard in this sense.

3. The complexity of a particular program is sometimes described by how many branching points
(conditional jumps) it has. High complexity in this sense indicates that a program is hard to
maintain and debug.

4. Mathematicians and programmers are frequently interested in the di�culty of coming up with
any solution at all to a problem, informally measuring complexity by years left unsolved.

Kolmogorov complexity is independent of all of the above metrics (note that Kolmogorov complexity
does not count memory used during computation, so it is not the same as space complexity).

Kolmogorov complexity is not frequently used in the �eld of computer science, possibly because
it is inconvenient. While any program gives an upper bound for the Kolmogorov complexity of the
problem it solves, �nding the true value is generally impossible. In addition, computers thankfully
have enough memory these days that program size isn't much of a limitation. Finally, it seems to me
that programmers simply refuse to write substantial programs which grow linearly with their inputs.

While Kolmogorov complexity doesn't have much inuence on concrete programs, it has value as
an abstract measure of problem complexity.

De�nition 3.9 (Computable Numbers). Computable numbers are real numbers which a Turing ma-
chine can approximate to any desired precision. All rational numbers and some irrationals, such ase,
are computable. However, the computable numbers are countable because the set of Turing machines
is countable, so most real numbers are uncomputable.

Because I am comparing Kolmogorov complexity to distance set size, approximations of real num-
bers are not precise enough for my purposes. I want to consider only numbers which are precisely
�nitely representable. These include the natural numbers and numbers k

2l for k; l 2 N because their

These two representations of numbers have analogs in actual computers, which store numbers in
either of the forms k � 2l : k; l 2 Z or k

m for a �xed large natural m to provide both a large range of
values alongside a good density of small numbers.

4 An Intuitive Relationship?

Kolmogorov compv compvre(small)an27(y)-3

Proof. If n = 5, the program is 55 characters long, which translates to 55 bytes or 440 bits. The
program length increases by one character (or one byte or eight bits) for each extra digit in n, so
the length of the whole program is at least the number of digits in n. The rest of the program runs
correctly without modi�cation for any n, so the remaining 54 bits of the program are constant. So,
the length of this program for arbitrary n is 54 + log10n. The Kolmogorov complexity of printing S is
at worst this length: C(S) � 54 + log10n 2 O(log n).

5.2 No upper bound on Kolmogorov complexity from distance set size

Let s be an incompressible string ofn bits. Divide s up into
p

n segments:s1 is the �rst
p

n bits, s2

is the next
p

n bits, etc.
For each string si , de�ne a set Si 2 N \ [1;

p
n] such that k is in Si exactly if the kth bit in si is 1.

Then take S = [f Si � f i gg. S is an incompressible random subset of the integer grid (N \ [1;
p

n])2,
since if S was compressible we could reverse this construction and compresss. So any program for
S requires at least n bits. This is much larger than the log n bits required to encode the complete
p

n �
p

n integer grid.
On the other hand, S is a subset of the

p
n �

p
n integer grid, Erd•os' original bound says that S

has at most O(np
log n)

) distances.

6 Sets of arbitrary Kolmogorov complexity and distance set
size exist

In this section I will construct sets with minimal distance sets and arbitrary complexity, and sets with
small complexity but maximal distance sets.

6.1 Sets of arbitrary complexity exist with j� j 2 O(n)

There is a program which prints (0; 0) for all but m points, and either (1; 0) or (0; 0) at random for
the remaining m points. This program has a minimum program length of O(log m) bits.

For n points, suppose we want an arrangement which has complexityO(m) with 0 � m � n. Place
all n points along the x-axis. Assign the �rst bmc points each the y-coordinate 0 or 1 at random, and
assign all the remaining points the y-coordinate 0. Since the �rstm points have random y-coordinates
which take 1 bit each to describe, any program returning this set must include at leastn bits.

Here is a Python program which prints this set:

rand = [b1, b2, ..., bm]
for b in rand:

print(f"({b},0)")
for i in range(n-m):

print("(0,0)")

For each of the random coordinatesbi , decide arbitrarily whether bi in the program is literally 1 or 0.
Since most strings of any given length are incompressible, we can chooserand to be incompressible,

which means there is no more e�cient way to remember which points are shifted. Then we can't avoid
spending at leastm bits.

Surprisingly, this set has very few distances. All points lie on an integer grid between (0; 0) and
(n; 1), so its distance set is a subset of this grid section's distance set. The possible distances are those
between points with x = 1, those between points with x = 0, and those between a point with x = 1
and a point with x = 0:

10

its derivative with respect to m is �

From the other direction, Kolmogorov complexity is closely related to Hausdor� dimension, and a
few researchers have developed a constructive Hausdor� dimension which might serve as a more useful
description of complexity [4].

Either an energy-based metric or constructive Hausdor� dimension seem likely to work for in�nite
sequences and real numbers.

10 Acknowledgements

Thank you to my advisor Professor Iosevich for introducing me to this problem and guiding me through
the research process, as well as for his constant encouragement throughout my undergraduate career.
I was incredibly lucky to �nd such an excellent teacher and mentor.

Thanks also to James Iler and Ben Coukos-Wiley for pointing out many errors, Alex Prideaux for

	
	
	
	

	
	
	
	
	
	

	
	
	
	

	
	
	

	

	
	
	
	

