


2 The Di�erence of Two Series

We will begin by laying down the foundation of this paper; that we can force
the di�erence of two series de�ned by functions that monotonically decrease
to zero to converge by carefully choosing the "density" of the two series with
respect to each other. Density is put in quotations as what we will be using
is slightly more nuanced than a ratio but it amounts to a very similar thing;
it will be performed using p(x; y) whereas normal density would just be k � x.
The y variable for p will be used later on, but not in this section. Throughout
this paper we will be using the relevant de�nitions and basic theorems from
Apostol’s book on mathematical Analysis [3].

Let f : R + ! R + and g : R + ! R + where R is understood to be fxjx >=
0g. We require that f , g have the following properties:

� f , g are monotone decreasing.

� limx!1 f(x) = limx!1 g(x) = 0

�
R x

0 f(t)dt and
R x

0 g(t)dt exist and are �nite 8x � 0

�
P1
n=1 f(n) =

P1
n=1 g(n) =1

We will de�ne F (x) =
R x

0 f(t)dt and G(x) =
R x

0 g(t)dt.

Remark. F;G are strictly increasing and F (R + ) = G(R + ) = R + , so they both
have inverse functions de�ned onR + .

Remark. By
P1
n=1 f(n) =

P1
n=1 g(n) =1, we have

lim
x!1

F (x) = lim
x!1

G(x) =1

Let us de�ne S � R + �R as S = f(x; y)jF (x)+y � 0g. Let p(x; y) : S ! R +
be p(x; y) = G� 1(F (x) + y).

Lemma 2.1. p(x; y) is well de�ned, and p is monotone increasing with respect
to both x and y, and limx!1 p(x; y) =1 8y 2 R .

Proof. Note by (x; y) 2 S F (x) + y � 0 ) F (x) + y 2 R + . Thus, p(x; y) =
G� 1(F (x) + y) is well de�ned. Note F and G are di�erentiable by the Fun-
damental Theorem of Calculus. Furthermore, clearly by limx!1 f(x) = 0,P1
n=1 f(n) =1, and f monotone decreasing, we can conclude

f(x) > 0 8 x 2 R +

Similarly for g. Then we �nd that F 0(x) > 0 and G0(x) > 0. Then we
may conclude that F � 1(x) is di�erentiable, and that (F � 1)0(x) > 0. Similarly,
G� 1(x) is di�erentiable, and (G� 1)0(x) > 0.

Then we may conclude that p(x; y) is di�erentiable with respect to x and y,
and by the chain rule

@p

@x
(x; y) = (G� 1(F (x) + y))0 = G� 10

(F (x) + y) � F 0(x) > 0
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Thus p(x,y) is strictly increasing with respect to x.
Note that limx!1 G(x) =1 andG strictly increasing means that limx!1 G� 1(x) =1.

By limx!1 F (x) + y =1 we may conclude that limx!1 p(x; y) =1.

Theorem 2.2. limx!1
Pbxc
n=1 f(n)�

Pbp(x;0)c
n=1 g(n) exists and is �nite.

Proof. We will show that the series is Cauchey by using the fact that the series
di�er from their respective integral by no more than the �rst term of the series.

Let h(x) =
Pbxc
n=1 f(n) �

Pbp(x;0)c
n=1 g(n) where h : R + ! R . Choose m >



We will now work on bounding it from below. Note that

h(m)� h(k) �
Z m� 1

k+1
f(t)dt



Theorem 3.2. d(y) = d(0)� y

Proof. This proof will largely hinge upon the fact that we have de�ned p(x; y) =
G� 1(F (x) + y), and so F (x)�G(p(x; y)) = F (x)�G(G� 1(F (x) + y)) = F (x)�
F (x) � y = �y. Everything else amounts to managing the error terms for
estimating series with integrals. If y > 0, Note

d(y)� d(0) = lim
x!1

bxcX
n=1

f(n)�
bp(x;y)cX
n=1

g(n)� lim
x!1

bxcX
n=1

f(n) +

bp(x;0)cX
n=1

g(n)

If we simplify, we may use Lemma 1.1 and Lemma 3.1 to conclude

d(y)� d(0) = lim
x!1

�
bp(x;y)cX

b1+ p(x;0)c

g(n)

Then we apply g(n) monotone decreasing to change into integrals and see that

d(y)� d(0) � � lim
x!1

Z p(x;y) � 1

p(x;0)+1
g(t)dt

Once again by g(n) monotone decreasing we may add back on the edges, can-
celing them out with the constant g(p(x; 0)), and convert the main portion of
the integral into

d(y)� d(0) � � lim
x!1

G(p(x; y))�G(p(x; 0)) + 2g(p(x; 0))

But by using the de�nition of p(x), we have

d(y)� d(0) � � lim
x!1

G(G� 1(F (x) + y))�G(G� 1(F (x))) + 2g(p(x; 0))

Then we �nd that

d(y)� d(0) � �y � lim
x!1

2g(p(x; 0)) = �y

Now we will bound by the other side and say

d(y)� d(0) � � lim
x!1

Z p(x;y)+1

p(x;0) � 1
g(t)dt

so then using the previous steps, we have

d(y)� d(0) � � lim
x!1

G(G� 1(F (x) + y))�G(G� 1(F (x)))� 2g(p(x; 0)� 1) = �y

Then we have �y � d(y)� d(0) � �y, so d(y) = d(0)� y.
If y = 0, we immediately see that d(y) = d(0) = d(0)� 0.
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If y > 0, we have that

d(y)� d(0) = lim
x!1

bp(x;0)cX
bp(x;y)+1 c

g(n)

We can then see, applying the previously used logic, that

d(y)� d(0) � lim
x!1

Z p(x;0)+1

p(x;y) � 1

d(y)� d(0) � lim
x!1

G(p(x; 0))�G(p(x; y)) + 2g(p(x; y))

d(y)� d(0) � �y

Additionally, bounding in the other direction, we have

d(y)� d(0) � lim
x!1

Z p(x;0) � 1

p(x;y)+1

d(y)� d(0) � lim
x!1

G(p(x; 0))�G(p(x; y))� 2g(p(x; y))

d(y)� d(0) � �y

Then we once again have that �y � d(y)� d(0) � �y, and so we are done with
all three cases.

Because d(c) = b�c for some b, if we can calculate d(c) for some value of c we
are instantly able to calculate it for all values of c. If it is infeasible to calculate
d(c) precisely for any value, it becomes important to consider how many terms
of the series one would have to calculate to obtain an accurate estimate. The
following lemmas describe the rate at which the series converges do d(c). I by
no means claim that these are the best terms one can obtain; in fact I suspect
that with use of better estimation tools such as Abel’s identity as written in
Apostol’s Introduction to Analytic Number Theory [4] or some other similar
estimate, better terms might be able to be obtained. Ultimately though this
resolves down to that the series converges at least as quickly as the individual
terms converge to zero.

Lemma 3.3. d(C) � (
Pbxc
n=1 f(n) �

Pbp(x;C)c
n=1 g(n)) � (f(k � 1) � f(bkc)) +

g(bp(k;C)c)

Proof. Let h(x) =
Pbxc
n=1 f(n) �

Pbp(x;C)c
n=1 g(n) where h : R + ! R . Let m >

k > 0 so p(m;C) > p(k;C). Note h(1) = d(C)
Then note

h(1)� h(k) = lim
m!1

mX
n= bkc

f(n)�
bp(m;C)cX
n= bp(k;C)c

g(n)� f(bkc) + g(bp(k;C)c)
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equation we get limx!1 h(x) � G� 1(F (x) + C) = limx!1 h(x) � p(x;C) = 0.
Consider

1X
n=1

an � d(C) = 0

is equivalent to

lim
x!1

bh(x)cX
n=1

g(n)�
bp(x;C)cX
n=1

g(n) = 0

Note that g(n) is monotone decreasing, and that

9Ms:t:8x > M; jh(x)� p(x;C)j < 2

Then note that jbh(x)c � bp(x;C)cj � 2 Then 8x > M we have

j
bh(x)cX
n=1

g(n)�
bp(x;C)cX
n=1

g(n)j � 2g(min(bh(M)c; bp(M;C)c)

Note that by h(x)!1, p(x;C)!1, and g(x)! 0, we have that

lim
M !1

2g(min(bh(M)c; bp(M;C)c) = 0

Then we have that

lim
x!1

bh(x)cX
n=1

g(n)�
bp(x;C)c

g(n4(n



To illustrate the use of these theorems and corollaries, we will recompute the
fact that if c



converges for some y. Note that for the same y, we have the convergent series

lim
x!1

bxcX
n=1

f(n)�
bp(x;y)cX
n=1

g(n)

By the di�erence of limits is the limit of di�erences, we must have that

lim
x!1

bp(x;y)cX
n=1

g(n)�
bp(x;y)cX
n=1

an

converges. Note that p(x; y) is continuous, strictly increasing with respect to x,
and that limx!1 p(x; y) =1. Then we may replace m = p(x; y) and note that
the following series converges, and thus we are done.

lim
x!1

bxcX
n=1

g(n)�
bxcX
n=1

an

We will proceed in the reverse direction by assuming that the above series
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