
Dionel Jaime

Method of Stationary Phase and Applications

April 2018

1 Introduction

In short, the method of Stationary Phase concerns itself with obtaining
bounds for oscillatory integrals of the following form

I(f, R) =

Z

Rn

eiRf(x)  (x) dx

where  (x) is a bump function.
The method of stationary phase is of great importance in the field of

Harmonic Analysis. One can find applications of this to other areas in Har-
monic Analysis, Partial Di↵erential Equations, Geometric Measure Theory,
and Geometric Combinatorics to name a few. Di↵erent bounds are obtained
depending on the conditions imposed on f



Such an estimate is begging for a more general result. The first of these
is the Vander-Corput lemma.

Lemma 2.1. (Vander Corput) Suppose that f 2 C1(a, b), f 0(x) � 1, and

f 0(x) is monotonic. Then
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Proof. We make use of the following trick
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To deal with the last integral, we make use of the monotonicity of f and
the fundamental theorem of calculus
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Putting these two estimate together, we obtain that
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and |I(f, R)|  2
R

Three observations are important in this proof. First, notice that even
though we only assumed that f 2 C1(a, b), we are still allowed to talk about

d
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because the monotonicity of f 0(x) guarantees that this derivative exists al-
most everywhere. Hence, we’re considering that integral as a Lebesgue in-
tegral.

Secondly, the condition that f 0(x) � 1 is far stronger than necessary.
We could just suppose that f 0(x) � � where � > 0 and make the appropiate
changes to have a trivially more general result.

Lastly, the computation that preceded the theorem shows that the con-
stant 2 in the bound of 2

R

is the best that we can do in terms of constants.

This result can be extended by considering derivatives of higher powers.
Before stating this, result, we should consider some motivation. Previously,
our motivation for Vander-Corput was the estimate
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Naturally, we’d like to look at integrals of the form

I(xn, R) =

Z
b
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eiRx

n

dx

In order to gain some intuition on what results we should expect, we
recall the classic Fresnel Integral. I won’t prove this result as I will prove a
more general result in a moment; however, the Fresnel integral tell us that
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By similar methods, we can also deduce that
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Applying the induction hypothesis, we obtain
����
Z

b

x0+�

eiRf(x) dx

���� =

����
Z

b

x0+�

eiR�

f(x)
� dx

����  C
m�1(R�)�1/(m�1)

We can apply the exact same argument to �f(x) in the first integral and
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Putting this together, we obtain that

|I(f, R)|  2C
m�1(R�)

�1
m�1 + 2�

If we choose � = R�1/m, we have
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we finally have that

|I(f, R)|  (2C
m�1 + 1)R� 1

m

where if C
m

= 2C
m�1 + 1 , then our proof is complete.

It may be worth nothing that we can play around with the constants by
choosing � in the above proof to be di↵erent.

It is natural to wonder whether we can keep extending this result. The
motivation we used suggests the consideration of fractional powers of x.

I(x↵, R) =

Z
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↵

dx

where ↵ > 1.
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To show that



Proof. Consider the quarter annulus with inner radius ✏ and outer radius r,
denoted, �

✏,r

. Let ↵ 2 (0, 1). By Cauchy’s Theorem we have that for all
r, ✏ > 0 Z
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✏,r

z↵�1eiz = 0

We can break up the contour we’re integrating over into four parts yield-
ing the following
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We will get the second integral and the fourth integral out of the way by
using some basic integral estimates and basic results in measure theory. We
proceed as follows
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On this domain, our integrand is a family of functions indexed by ✏ which
is uniformly bounded by ✏↵e✏ on a set of finite measure and approaches 0
point-wise as ✏ ! 0. Therefore, we may apply the dominated convergence
theorem and obtain
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Similarly we have that
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Recall that removing a point from the domain of integration, [0,⇡/2]
does not change the value of the integral. Therefore we may view the last
integral as being over (0,⇡/2]. The purpose of doing this is because on
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Theorem 3.1. Let T
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We need to demonstrate the following claim: Let �M

i=1 be real valued
smooth functions and assume that �(p) = 0 and that r�(p) = 0. Lastly, let

� =
Y

�
i

Then all partial derivatives of � of order less than 2M also vanish at p.

Proof. By the product rule any partial D↵� is a linear combination of terms
of the form
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P
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i

= ↵ . If |↵| < 2M , then some �
i

must be less than 2, so by
hypothesis all such terms vanish at p.

To prove our theorem, we need only di↵erentiate I(R) under the integral
sign in order to obtain
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and all that is required of the remaining maps is that they map onto sets
whose closures do not contain {±e

n

}
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