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1 Preliminaries

Di�erential topology serves in many ways as a bridge between many of the broad, global results of
general topology and the local, analytical results of di�erential geometry. As we see in the foregoing work,
fundamental quantities known to topology such as the Euler characteristic, singular homology, and the like,
may be expressed in terms of fairly simple analysis. Work in this area was pioneered by notable mathemati-
cians such as Poincar�e, Hopf, and Lefschetz, but much of our discussion will focus on contributions made
by Marston Morse. Originally, Morse studied the general theory of calculus of variations, an area of math-
ematics quite commonly viewed only in relation to its physical applications in physics. However, although
this topic seems removed from pure mathematics to the uninitiated, Morse’s work ultimately showed that
critical point theory, and hence di�erential topology, are at the heart of it all.

2 Background

To begin, we recall the extrinsic de�nition of a smooth manifold as a subset of Euclidean space as well
as some of the rudimentary associated results. The most fundamental object in our study is the manifold,
which we will de�ne shortly. However, to give a precise notion of smoothness we �rst state

De�nition 1 For open sets U � Rk, V � Rl, a map f : U ! V is smooth if every partial derivative
@mf

@xi1 ���@xim
exist and are continuous. More generally, if X � Rk and Y � Rl are arbitrary subsets, then

f : X ! Y is called smooth if for x 2 X, 9U � Rk open with x 2 U and a smooth map F : U ! Rl such
that F

��
U\X = f .



Proof. Because f is a di�eomorphism, f�1 exists and is smooth, so f�1 � f = IdU , therefore by (1) and (2)
we know d(f�1 � f) = d(f�1) � df = IdRk , and similarly df � d(f�1) = IdRl . This implies df has a two-sided
inverse, i.e. it is nonsingular, and then we must have



Theorem 1 (Sard) Let f : U � Rm ! Rn be smooth, U an open set. Denote by C the set of critical points
of f , i.e. C = fx 2 Rm j rank(dfx) < ng. Then f(C) � Rn has Lebesque measure zero. [Interesting cases
only when m � n, as m < n =) C = U .]

To move to the more general setting of manifolds, we need only recall that a smooth manifold M is coverable
by a countable collection of open sets, each of which is di�eomorphic to an open set U � Rm. We immediately
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Claim: The projection �m : Rm ! R has 0 as a regular value.

To see this, note that for x 2 ��1
m (0), Tx(g�1(y) is the null space of dfx = dfx. Our hypotheses stipulate that

f has x as a regular point, as well as f
��
@Hm , so the null space is not completely contained in Rm�1 � f0g.

) g�1(y) \Hm = f�1(y) \ U .

3 Intersection Numbers and Degrees

Throughout this section, the following setup will be used: (i) M is compact; (ii) @M = ;; (iii) N is
connected; (iv) dimM = dimN . These hypotheses are fairly restrictive, but they allow us to get to several
results at the heart of di�erential topology.
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Speci�c Example: To elucidate the functionality of the above de�nition, consider the standard basis in its

usual order on Rn:

8>>><>>>:e1 =

0BBB@
1
0
...
0

1CCCA ; e2 =

0BBB@
0
1
...
0

1CCCA ; : : : ; en =

0BBB@
0
0
...
1

1CCCA
9>>>=>>>;. This gives the standard orientation; suppose

instead we had the basis elements listed in the opposite order to give a new orientation fe01 = en; e
0
2 =

en�1; : : : ; e
0
n = e1g. Then notice e0n+1�i =

2640 � � � 1
...

. . .
...

1 � � � 0

375 ei. If we denote this matrix by A, detA = (�1)n.

For familiarity, consider the familiar R3. Then we see that by labeling x = e1, y = e2, and z = e3, we recover
the notion of a "right-handed" or "left-handed" coordinate system, each of which corresponds to a distinct
orientation of the space.

De�nition 9 An oriented manifold M is one with a consistent choice of orientation on each TxM



Proof. Orient M � I as a product; then @(M � I) = M �f0g[M �f1g where M �f0g will have the wrong
orientation and M�f1g will have the correct orientation. Then by the previous Lemma, deg(F

��
@(M�I); y) =

deg(g; y)� deg(f ; y) = 0, from which the result follows.

With a Lemma in either hand, the Theorems of this section are proven in analogous fashion to their modulo
2 versions.

Application: Consider the family of maps fk : C! C given by fk(z) = zk for k 2 Z. In particular, we can
easily see fk

��
S1 : S1 ! S1 maps the 1-sphere to itself as a k-fold covering. This map behaves nicely (even

if k < 0, (0; 0) =2 S1), and we can compute that deg(fk) = k. Unlike in previous sections when we could
only have said def(fk) = k mod 2, which would only di�erentiate between even and odd values of k, integer
degree theory separates all of these maps into distinct homotopy classes.

Moving forward, we wish to prove a general version of what is colloquially known as the Hairy Ball
Theorem. To that end we must �rst make a de�nition.

De�nition 11 A tangent vector �eld on M � Rk is a smooth assignment of vector v : M ! Rk such that
v(x) 2 TxM for all x 2M .

As previously mentioned, we are interested in the case M = Sn. The de�nition is satis�ed there ()
v







is the indersection number of f with any point y; however, as before, we know this is independent of y.



This has some relatively simple intuition behind it: graph(IdX) = �, hence L(IdX) = I(�; graph(IdX)) =
I(�;�) =: �(X



except N = (0; 0; 1) and S = (0; 0;�1) toward S. Then from a simple sketch we can see LN (f) = LS(f) = +1
(the �xed point at the north pole being a source, the south pole being a sink by construction). Hence
L(f) =

P
f(x)=x Lx(f) = 2. Clearly though a homotopy could be constructed between f and the identity,

so from a previous theorem L(f) = L(IdS2) = �(S2) = 2.

Corollary 13.1 The Euler characteristic of the 2-sphere is 2.

Corollary 13.2 Every map f : S2 ! S2 such that f � IdS2 must possess a �xed point. In particular then
the map a(x) = �x cannot be homotopic to the identity.

Proof. Suppose such a map f did not possess a �xed point; then by the �rst theorem in this section,
L(f



Recall the de�nition of the Gauss map, g : X ! Sk, x 7! n̂x (changing to G& P notation here for unit
normal vector at x). The Jacobian of this map is the curvature of X at x, J(g) = �(x). This data associated
with X is strictly geometric (unlike the many topological structures we have seen), so it is not preserves by
typical topological transformations. We can however say something beautiful about the total curvature, i.e.R
X
�.

Gauss-Bonnet Theorem: If X is a compact, even-dimensional manifold embedded in Rk+1 (a hypersur-
face), then Z

X

� =
1

2
V ol(Sk)�(X):

It is important to make note of the fact that the ’even-dimensional’ hypothesis is of utmost importance; we
saw in the previous section that if X were odd dimensional, it is automatic that �(X) = 0, but the integral
of the curvature may not be.

7 Morse Theory

The previous sections give us a sense that topology may be approached through a variety of methods, a
rather pleasant surprise. If possible we would like to know to what extend the topology of a manifold can be
described by studying maps f : M ! R. The amount of information which this theory, Morse theory, has to
o�er is tremendous. We introduce some of the main concepts and goals of through the following motivating
example.

Example: Let M = T 2 as depicted below, tangent to the plane V .

Let f : M ! R be the height above V , and denote by M



This process of ’attaching’ cells is terribly vague; let’s make it more precise.
Let X



By inspection of the Hessian, we see there is a subspace V � TpM , dimV = �, on which Hp(f) is negative
de�nite (span of �rst � columns of H). Similarly, there is a subspace W , dimW = n� �, on which Hp(f) is
positive de�nite (span of last n � � columns of H). From dimensionality, if there were a subspace V 0 with
dimV 0 > dimV on which H was negative de�nite, V 0 \



For a �xed value q 2 M , consider the map given by t 7! f(’t(q)). Provided ’t(q) 2 f�1([a; b]), the

Fact from before says d(f�’t(q))
dt =

D
d’t(q)
dt ; grad f

E
= hX; grad fi = 1. Thus we see this map is linear, with

derivative 1 for f(’t(q)) between a and b.

Next, from this family f’tg, consider the di�eomorphism ’a�b; Clearly this carries Ma di�eomorphi-
cally to M b.

Lastly, de�ne a 1-parameter family rt : M b !Ma,

rt(q) =

(
q; f(q) � a
’t(a�f(q))(q)



Inductively we have thus shown Ma for any a as speci�ed above has the homotopy type of a CW -
complex. If M



b�(Mak ;Ma0) = b�(M) �
kX
i=1

b�(Mai ;Mai�1) = c�

where c� is the number of critical points of index �, since by above we know

Hi(M
ai ;Mai�1) =

(
R; � = �i

0; else
=) b�(Mai ;Mai�1) =

(
c�; i = �

0; else
:

In the case f = �, which is additive, we see similarly

�(M) =

kX
i=1

�(Mai ;Mai�1) =
X

(�1)ici:

We combine the previous results into one concise statement

Theorem 18 (Weak Morse Inequalities) If M is a compact manifold and the number of critical points of
index � on M is c�, then (1) b�(M) � c� and (2) �(M) =

P
(�1)�b�(M) =

P
(�1)�c�:

Whenever possible, we want to sharpen inequalities. That is possible here based on the next Lemma.

Lemma 16 De�ne the function F� as

F�(X;Y ) = b�(X;Y )� b��1(X;Y )� � � � � b0(X;Y ):

Then F� is subadditive.

Proof. Consider the exact sequence of vector spaces given by

! V0 ! V1 ! V2 ! � � � ! Vn ! 0

where we denote each homomorphism mapping ! Vi by hi



8 Morse Homology



Lemma 17 In local coordinates, rf = gij @f@xi

@
@xj

.

Lemma 18 In local coordinates about a critical point, such that
n

@
@xi

o
is an orthonormal basis for the

tangent space, the di�erential of the gradient is the Hessian, i.e. @
@~xrf(p) = Hp(f).

Lemma 19 In local coordinates with the same orthonormal basis as before, the matrix for the di�erential
of ’t is given by

@

@~x
’t(p) = exp(�Hp(f)t):

Proposition 14 If f : M ! R is Morse, where M is (among the hypotheses outlined at the beginning of
the section) closed, then M = tp2Crit(f)W

u(p), and/or similarly M = tq2Crit(f)W
s(q).

A nice example: Consider the sphere Sn � Rn+1 and de�ne a map f : Sn ! R by f(x1; : : : ; xn+1) = xn+1

(if we assume the n+ 1 coordinate is the "vertical" one through the north and south poles N and S, this is
the height function). It is clear f has 2 critical points, N and S, of index n and 0 respectively (since local
coords about N would look like �

P
x2
i , while about S they would look like

P
x2
i ). In turn, we �nd

W s(N) = fNg; Wu(N) = Sn � fSg; W s(S) = Sn � fNg; Wu(S) = fSg:

8.2 Morse-Smale Functions

De�nition 29 A Morse function f : M ! R satis�es Morse-Smale transversality if Wu(q) t W s(p) for all
critical points p; q of f . Such a function is simply called Morse-Smale.

From basic di�erential topology notions, embedded submanifolds W (q; p) := Wu(q) \W s(p) are obtained,
and are of dimension �q � �p. As a consequence we �nd a Corollary.

Corollary 19.1 If f : M ! R is a Morse-Smale function, then the index of the critical points decreases
strictly along gradient 
ow lines. In other words, if p; q are critical points of f with W (q; p) 6= ;, then �q > �.

Proof. Given W (q; p) is nonempty, it contains at least one 
ow line from q ! p. The dimension of this 
ow
line must be 1, hence W (q; p) � 1.

Example Revisited: We return to the simple example of the height function of the torus positioned
vertically on a plane. Immediately we notice a problem: the preceding Corollary does not appear to hold
here, as the 
ow lines between the top of the "hole" and bottom of the "hole" connect critical points which
are both of index 1, hence the index of the critical points is not strictly decreasing. This is because the
standard height function is not Morse-Smale as the 
ow lines very clearly do not intersect transversely. We
can however tilt



Corollary 20.1 If p; q are critical points with �q � �p = 1, then W (q; p) = W (q; p)[ fp; qg and W (q; p) has
�nitely many components (number of gradient 
ows from q to p is <1).

Proof. W (q; p) [ fp; qg since Corollary 19.1 indicates there are no intermediate critical points between q
and p. As a result, W (q; p) [ fp; qg is a closed subset of a compact space, hence compact. We know the
gradient 
ow lines between q and p form and open cover of W (q; p) which can be extended to an open cover
of W (q; p) [ fp; qg. From the de�nition of compactness we thus see the number of gradient 
ow lines is
�nite.

De�nition 32 For p; q critical points of f : M ! R, p is an immediate successor of q if q � p and @r 6= p
such that q � r and r � p.

Let f : M ! R be Morse-Smale and assume p is an immediate successor of q. Let t 2 R, be a regular
value of f between f(p) and f(q). From the Regular Value Theorem the set f�1(t) for all such t is a
submanifold of M , dim(f�1(t)) = m� 1, and f�1(t) is transverse to both Wu(q) and W s(p). This leads to
the following de�nition of two other submanifolds of M .

De�nition 33 The unstable sphere of q is Su(q) = Wu(q) \ f�1(t), while the stable sphere of p is Ss(p) =

W s(p) \ f�1(t), which are embedded submanifolds of dimensions �q � 1 and m� �p � 1.

Immediately following from this de�nition is the fact that Wu(q) t W s(q) =) Su(q) t Ss(p) =)
Su(q) \ Ss(p) =: N(q; p) is an embedded submanifold of dimension �1 � � (



With this number in mind we are �nally able to construct the desired chain complex. The same
hypotheses associated with M still apply.

De�nition 35 Let f : M ! R be Morse-Smale and assume orientations for unstable manifolds associated
with f have been chosen. Let Ck(f) be the free abelian group of index k critical points of f and de�ne
C�(f) = �mk=0Ck(f) where m = dimM . The Morse-Smale-Witten boundary operator (abbreviated MSW)
is a homomorphism @k : Ck(f)! Ck�1(f) given by

@k(q) =
X

p2Crk�1(f)

n(q; p)p:

The pair (C�(f); @�) is the MSW chain complex of f .

8.4 Morse Homology Theorem

Theorem 21 The homology of the MSW chain complex (C�(f); @�) is isomorphic to the singular homology
H�(M;Z).

Remark 1 It is fairly intuitive to see the relation between the numbers n(q; p) and the coe�cient ring Z of
H�(M;Z). However, for greater generality, the MSW chain complex can be constructed with coe�cients in
any commutative ring R via the tensor product Ck(f) 
 R and an application of the Universal Coe�cient
Theorem such that (C�(f); @�) �= H�(M;R).

To motivate the Theorem, recall in Theorems 16 and 17 that we used a Morse function f : M ! R
to prove any manifold M



From this we can compute directlyHk(C�(f); @�) = ker(@k)=im(@k+1) to �ndHk(C�(f); @�) =

(
Z; if k = 0; 1

0; else
:

Example 1a: Deformed S1. Since homology should remain invariant under such transformations this is a
valuable test. Again our function f : S1 ! R is the height function but now we have many critical points
pi, i = 1; : : : ; 6. The image below provides all the orientation assignments that have been chosen

Following the same methods as when the circle was not deformed, we �nd the MSW chain complex looks
like

C1(f) C0(f) 0

hp3; p5; p6i hp1; p2; p4i 0

@1

�= �=
@1

:

Now though, the boundary operator is a bit more di�cult to describe, as we must compute n(pi; pj) for pairs
i; j ranging over 1; : : : ; 6. These coe�cients are arranged in the following matrix (aij) where aij = n(pi; pj):

(aij) =

26666664
0 0 0 0 0 0
0 0 0 0 0 0
�1 1 0 0 0 0
0 0 0 0 0 0
�1 0 0 1 0 0
0 �1 0 1 0 0

37777775 :

We then can calculate H1(C�(f); @�) = ker(@1)=0 = ker(@1). Using the de�nition of the boundary op-
erator, we know � = ap3 + bp5 + cp6 2 ker(@1) provided @1(�) = 0, i.e. a@1(p3) + b@1(p5) + c@1(p6) =
a(p2 � p1) + b(p4 � p1) + c(p4 � p2) = 0. We see then if a = �b = c that the equation is satis�ed,
hence H1(C�(f); @�) = ker(@1) = hp3 � p5 + p6i �= Z. Similarly, H0(C�(f); @�) = ker(@0)=im(@1) =
hp1; p2; p4i = hp2 � p1; p4 � p1; p4 � p1i = f(p1; p2; p4) j p1 = p2 = p4 2 Zg �= Z: It is clear the homology

groups for k 6= 0; 1 are 0, hence we arrive again at the conclusion Hk(C�(f); @�) =

(
Z; if k = 0; 1

0; else
as

desired.

Example 2: Tilted T 2



As seen prior, there are four critical points p; q; r; s of index 0; 1; 1; 2 respectively. The resulting chain complex
looks like

C2(f) C1(f) C0(f) 0

hsi hq; ri hpi 0

@1

�=
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