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Abstract

In this paper, we study the dynamics of rotation-like logistic maps. In particular,

we focus on the case of rotation-like logistic maps with Fibonacci quotient, including

related parts on Hubbard tree, kneading invariant and kneading map. We shall present

theorems and conjectures on their associated kneading maps.
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2 Introduction

At the beginning of the twenty-�rst century, Ble and Douady [2] introduced a family of

logistic maps inspired from ideas originated from holomophic dynamical systems. Despite

the connection between the dynamics of logistic maps and holomorphic dynamics, there has

been little study carried on from the perspective of both areas. Our goal is to study the

kneading invariant and the kneading map of the logistic maps in Ble-Douady’s family. In

this paper, we shall only study one particular subset of these logistic maps: rotation-like

logistic maps with Fibonacci quotient.

3 Preliminaries

3.1 Basic Concepts in Complex Dynamics

A discrete dynamical system (X; f) is a space/set X along with a map f : X ! X,

where X is our \system", and f is \the law of dynamics".

De�nition If f(z) = z, then z is called a �xed point of f . More generally, if fn(z) = z and

fm(z) 6= z81 � m � n� 1, then z = z0 ! f(z) = z1 ! f 2(z) = z2 ! � � � ! fn�1(z) = zn�1

is called a periodic orbit of period n.

De�nition Let z be a �xed point of f . If 9U , a neighborhood of z such that f(U) � U and

8z0 2 U , we have limn!1 f
n(z0) = z, then z is called an attracting �xed point. If instead,

z is in an periodic orbit of period n, then z = z0 ! f(z) = z1 ! f 2(z) = z2 ! � � � !

fn�1(z) = zn�1 is called an attracting periodic orbit if z is an attracting �xed point of

fn.
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ducing another special set:

Theorem (Fatou) Let p be a non-linear polynomial of order n. Then every immediate

basin of attraction for a periodic orbit contains at least one critical point of p.

Corollary There can be at most n� 1 di�erent attracting periodic orbits.

As a corollary in our quadratic polynomial case, the immediate basin of attraction of an

attracting periodic orbit, which has to be bounded (if jzj is large enough, pnc (z) will blows

to in�nity no matter what c we choose), must contain the orbit fpnc (0)g. Inspired by this

observation, we now de�ne the following more general set, called the Mandelbrot set:

M = fc : 9Ac; jpnc (0)j < Ac;8n 2 Ng (2)

It is conjectured that M is the closure of M0. We shall not discuss further on that.

It is proved by Douady and Hubbard that the Mandelbrot set is connected.

Following from our previous discussions, there might also be of some interest to consider the

collection of all points that are bounded under in�nite iteration. It is called the �lled Julia

set, denoted by K = K(f). The formal de�nition is

K(f) = fz : 9Cz > 0; fn(z) < Cz;8n 2 Ng (3)

Its boundary @K is called the Julia set, denoted by J = J(f). We see that Julia set is

indeed the boundary between being \blowing to in�nity" and "forever bounded" after in�nite

iterations.

For a quadratic family pc(z) = z2 + c, we denote Kc to be K(pc). Actually, there is another

version of the de�nition Mandelbrot sets, which is the primary version used in Bl�e’s paper.

Proving equivalence to our previous de�nition is very nontrivial and involves the use of Green

5



function, which is somewhat a characterization of \the speed of blowing to in�nity". We

shall not discuss into details here.

De�nition’ The Mandelbrot set M is the collection of all c’s for which Kc is connected.

There are some very interesting properties of Julia sets. We will introduce them without

detailed proofs:

Theorem If f is a rational function, then J(f) 6= ;.

Theorem J is forward invariant. More speci�cally, let z 2 Ĉ, then f(z) 2 J if and only if

z 2 J .

Theorem J(f) = J(fn)8n 2 N.

There are two equivalent de�nitions of Fatou set. One of them is more \intuitive", and the

other is de�ned using the normal family of functions.

De�nition The Fatou set is the complement of the Julia set. In other words, it is the union

of all points that are bounded under in�nite iterations of f , as well as those in the basin of

attraction for 1.

The following theorem is a great illustration of what Julia and Fatou sets really mean:

Theorem The repelling orbit points of f are completely contained in J(f); on the other

hand, the attracting orbit points of f are completely contained in Ĉ n J(f).

Let us recall how we constructed the Mandelbrot set M . The set in the �rst iteration,

consisting of all the values of c resulting in an attracting �xed point, denoted by M1, main

hyperbolic component, and @ �M1 is called the main cardioid.

A point in M with an attracting cycle is called hyperbolic.

Theorem M is locally connected when restricted to the hyperbolic components.
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In particular, M is locally connected when restricted to the main cardioid.

De�nition The orbit of a critical point with respect to a polynomial f is called a critical

orbit. The critical orbit is preperiodic if the orbit is �nite. If the critical orbits are periodic

or preperiodic (or both), then the polynomial f is called PCF (postcritically �nite). In

the case that all critical orbits are periodic, f is called a center; if they are all preperiodic,

f is called a Misiurewicz polynomial. Denote the set of all critical points of f by C(f).

Then the postcritical set is the union of all subsequent images of all critical points under

f .

De�nition Let X, Y be topological spaces and let (X; f) and (Y; g) be their corresponding

dynamical systems. If h is a homeomorphism from Y to X such that h�1 � f � h = g,

then (X; f) and (Y; g) are called topologically conjugate. If instead h is continuous and

surjective (but not necessarily a homeomorphism), then (X; f) and (Y; g) are called semi-

conjugate.

In some sense, we see that conjugation means \the same after a change of coordinates".

Theorems by Koenig and Bottcher show that a polynomial map behaves \locally like a

linear or a monomial map" near its attracting �xed point in the sense that the map is

conjugate to a polynomial in some open neighborhood of its �xed point under a conformal

map. Therefore, the dynamics (i.e. the properties of the corresponding maps under long

iterations) of two conjugate dynamical systems are very similar.

It can be shown that when restricted to J(pc), pc is semi-conjugate to the angle doubling map

� : T! T : � ! 2�, where T = R=Z is a representation of the circle with unit circumference.

In addition, our choice of � can ensure that the orbit of � under the angle doubling map does
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not intersect the interval [1
4

+ �
4
; 1

2
+ �

4
].

3.2 Hubbard Tree

Now we construct the Hubbard tree (this follows the de�nition in Ble’s paper [2]). A graph

� = (V;E) consists of a set of vertices V and a set of edges E, each connecting two vertices.

If in addition, � is connected (intuitively, you can start from any vertex and reach any

other vertex by going through the edges in E) without a loop, then it is called a tree. For

convenience, if n edges meet at the same vertex, then the angle between any two edges is an

integer multiple of 1
n
.

De�nition A Hubbard tree is a tree that further satis�es the following properties:

(1) There exists a skew-symmetric function � : (l; l0) ! T, assigning each pair of edges

meeting at the same vertex an angle, that satis�es (�(l; l0) = 0 if and only if l = l0) and

(�(l; l0) + �(l0; l00) = �(l; l00)).

(2) There exists a map � : V ! N, called a local degree function, that assigns a degree to

each vertex, with the property 1+
P

(�(v)�1) > 1. (Here, N does not include 0.) If �(v) > 1,

then v is critical. Note that if there is no critical vertex, then 1 +
P

(�(v)� 1) = 1 + 0 = 1,

so there must be at least one critical point.

(3) There exists a homeomorphism � : H ! H mapping vertices to vertices and edges to

edges, with the property that �(�(l); �(l0)) = �(v)�(l; l0) where v is the vertex on which the

two edges meet. If �n(v) = v for a positive integer n, then v is called a periodic. If v is a

critical point in addition, then its orbit is called a critical cycle. If v is not in the mage of

a critical cycle under ��n8n 2 N, the v is a Julia vertex; otherwise, v is called a Fatou
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vertex.

(4) There exists a metric d : V �V ! N[f0g, counting the number of edges in the shortest

path between two vertices.

(5) H is expanding. This means that for all Julia vertices v; v0 that are connected by an

edge l, d(�n(v); �n(v0)) > 1 for some nl.

Here we provide three concrete examples for the Hubbard tree. Let us consider a rotation-

like logistic map



shorter half-circle (unless  = 1=2, which we shall not consider here). Just for mathematical

rigor, take the closure of the two half-circles so they are both compact segments. Relabel x1

and x2 on the longer half-circle as x01 and x02.

3. \Paste" x2 and x01 together (more rigorously, we can consider performing a quotient map

by identifying these two points on the two half-circles) and label it as �. (We do not have

to use � in our discussion below. This is just for construction.)

4. Now we have an interval. The interval goes from x1 to x02 in ascending order. We can

map this interval to the real line homeomorphically and set x0 = 0 for simplicity.

We can see the �rst three examples in the picture below:

Now that we have a Hubbard tree, we are looking for a map such that f(x0) = x1, f(x1) = x2,

etc. It is not hard to imagine that there are many maps that satisfy this condition, even if

we stipulate that the map must be holomorphic.

Theorem A Hubbard tree corresponds to a unique PCF (a polynomial map that have �nitely

many critical points along with their iterations under f) up to an a�ne conjugation.

This theorem is critical in that we can construct our Hubbard trees with more freedom in

choosing a corresponding map.

We now introduce the notion of kneading invariant.

3.3 Kneading Invariant

Suppose we have a unimodal map f : [0; 1] ! [0; 1], which means that f is a continuous

map with one and only one maximum x0 and that f(0) = 0 = f(1). Let x+
0 be the right

limit of x0.
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Figure 1: Examples on construction of the Hubbard Tree
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De�nition The kneading invariant of f is de�ned as a sequence v(f) = v1v2v3 � � �, where

each vi denote the i-th digit in the sequence, and is de�ned to be:

vi =

8>>><>>>:
0; if f i(x+

0 ) < x0

1; if f i(x+
0 ) > x0

Here, we use x+
0 instead of x0 in order to avoid the case when f (i)(x0) = x0.

Also, we are only considering the case where we are in the \dynamical core". In other words,

f (2)(x0) < x



into an in�nite number of blocks in a unique way through an algorithm.

The algorithm for the decomposition is as follows [8]:

1. Start with either 0 or 1, depending on whether v(f) starts with 0 or 1, and consider 0v(f)

or 1v(f) accordingly.



3.4 Kneading Map

The kneading map, compared to kneading invariant, is de�ned in a much more implicit way.

De�nition The kneading map Q : N! N is the map that satis�es:

RQ(n) + 1 = r(n) (4)

The image of the kneading map of a rotation-like logistic map with Fibonacci quotient is

a repetitive sequence. In other words, there is some period p such that Q(N) = Q(N mod

p). This directly follows from the fact that the kneading invariant of f is periodic, since this

means the block decomposition of)is 7.040504)



De�nition’ The kneading map Q : N! N is the map that satis�es:

SQ(n) = Sn � Sn�1 (5)

4 Examples

We now compute two examples of the kneading invariant of the logistic maps with Fibonacci

quotient. Before that, we need to have a map which takes x0 to x1, x1 to x2, � � � . This map

does not have to be unique; rather, as we have previously discussed, they only have to be

equivalent up to an a�ne conjugation. In this case, just for simplicity, we use the quadratic

map f(x) = x2 + c. Now, a requirement is that when iterated enough times (in particular,

multiples of the period of the number of points in the Hubbard tree), f takes x0 back to

itself. Here, we assume that the points in the Hubbard tree are mapped to the real line

and let x0 = 0 be the turning point of the unimodal map f . Actually, f is not exactly a

unimodal map here, since it is not mapping from [0; 1] to [0; 1]. However, it is equivalent to

a unimodal map up to an a�ne conjugation, so they have the same dynamics and therefore

can be treated equally. We are mapping the Hubbard tree to a real interval, and it does not

matter much where the interval is on the real line regarding the dynamics on the Hubbard

tree.

4.1 Case  = 3
5

We can actually solve for c by noting that f(x0) = f(0) = c = x1, f(x1) = c2 + c = x2,

f(x2) = (c2 +c)2 +c = x3, f(x3) = ((c2 +c)2 +c)2 +c = x4, f(x4) = (((c2 +c)2 +c)2 +c)2 +c =
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x0 = 0. Although the value of c does not matter much in our discussion later, we will just

compute c as a reference. Note that since this is a polynomial, we will have multiple solutions

of c, which may or may not be real, and not all of them will satisfy the requirement that the

relative position of the images of x0 must be the same as we desired. For example, the trivial

solution c = 0 is not valid for our purposes, since if we take c = 0, we will have x0 = x1 = x2

instead of x1 < x0 < x2. An unproved conjecture is that only one c is valid. The only valid

c here is c � �1:6254.

The kneading invariant is 01000 � � � . The repeating part is 01000. Let us practice the block

decomposition for this map as an example:

1.Starting with the �rst digit 0 and comparing the sequence of v(f) starting from the �rst

digit with 0v(f) (recall that if the digit we are considering is 0, we compare the kneading

invariant starting with this digit with 0v(f); otherwise, we compare it with 1v(f)), since 1

is the second digit in v(f), and 0 is the �rst digit of v(f), and 1 6= 0, we stop, so the �rst

block is (0).

2.Next, starting from the second digit 1 and comparing the portion of v(f) starting from the

second digit with 1v(f), since the third digit in v(f) is 0, which is equal to the �rst digit in

v(f), we continue; comparing the fourth digit of v(f), which is 0, with the second digit of

v(f), which is 1, we �nd 0 6= 1, so we stop on this block, and the the second block is (10).

3.Next, starting from the fourth digit of v(f), which is 0, and compare the sequence of v(f)

starting from it with 0v(f): since the �fth digit of v(f) is 0, and the �rst digit of v(f) is 0,

we continue; now, the sixth digit of v(f) is 0, and the second digit of v(f) is 1, 1 6= 0, so we

stop with this block, so the third block is (00).
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4.Since the kneading invariant forward is just repeating the �rst �ve digits, the block de-

composition will be exactly the same as the three we did above, which means we will have

blocks (0)(10)(00) repeating forever.

Now we calculate the sequence of kneading map of f :

1.First, R(Q(1)) + 1 = r(1) = 1, so R(Q(1)) = 0. Since R is a strictly increasing function (a

block must have length at least 1), and R(0) = 0, we must have Q(1) = 0.

2.Next, R(Q(2)) + 1 = r(2) = 2, or R(Q(2)) = 1. By the same reason, since R(1) = 1, we

must have Q(2) = 1.

3.Next, R(Q(3)) + 1 = r(3) = 2, or R(Q(3)) = 1. By the same reason, since R(1) = 1, we

must have Q(3) = 1.

4.From this point on, for any j � 4, R(Q(j mod 3)) + 1 = r(j mod 3), so we must have

Q(j) = Q(j mod 3).

4.2 Case  = 5
8

Similarly as the procedures in the last example, we have f(x0) = f(0) = c = x1, f(x1) =

c2 + c = x2, f(x2) = (c2 + c)2 + c = x3, f(x3) = ((c2 + c)2 + c)2 + c = x4, f(x4) =

(((c2 +c)2 +c)2 +c)2 +c = x5, f(x5) = ((((c2 +c)2 +c)2 +c)2 +c)2 +c = x6, f(x6) = (((((c2 +

c)2 +c)2 +c)2 +c)2 +c)2 +c = x7, f(x7) = ((((((c2 +c)2 +c)2 +c)2 +c)2 +c)2 +c)2 +c = x0 = 0.

By checking the relative positions of the images of x0 under f for di�erent c, we see that the

only valid c here is c � �1:7111.

The kneading invariant is 01001000 � � � . The repeating part is 01001000. Let us practice the

block decomposition for this map:
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1.Starting with the �rst digit 0 and comparing the sequence of v(f) starting from the �rst

digit with 0v(f) (recall that if the digit we are considering is 0, we compare the kneading

invariant starting with this digit with 0v(f); otherwise, we compare it with 1v(f)), since 1

is the second digit in v(f), and 0 is the �rst digit of v(f), and 1 6= 0, we stop, so the �rst

block is (0).

2.Next, starting from the second digit 1 and comparing the portion of v(f) starting from the

second digit with 1v(f), since the third digit in v(f) is 0, which is equal to the �rst digit in

v(f), we continue; comparing the fourth digit of v(f), which is 0, with the second digit of

v(f), which is 1, we �nd 0 6= 1, so we stop on this block, and the the second block is (10).

3.Next, start from the fourth digit 0, and compare the sequence of v(f) starting from it with

0v(f): since the �fth digit of v(f) is 1, and the �rst digit of v(f) is 0, we stop here, so the

third block is (0).

4.Next, start from the �fth digit 1, and compare the sequence of v(f) starting from it with

1v(f): since the sixth digit of v(f) is 0, which is equal to the �rst digit 0, we continue; since

the seventh digit is 0, which is not equal to the second digit 1, we stop here, so the fourth

block is (10).

5.Next, start from the seventh digit 0, and compare the sequence of v(f) starting from it

with 0v(f): since the eighth digit 0 is equal to the �rst digit 0, we continue; since the ninth

digit 0 is di�erent from the second digit 1, we stop here, so the �fth block is (00).

6.Since the kneading invariant forward is just repeating the �rst eight digits, the block

decomposition will be exactly the same as the three we did above, which means we will have

blocks (0)(10)(0)(10)(00) repeating forever.
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Now we calculate the sequence of kneading map of f :

1.First, R(Q(1)) + 1 = r(1) = 1, so R(Q(1)) = 0. Since R is a strictly increasing function (a

block must have length at least 1), and R(0) = 0, we must have Q(1) = 0.

2.Next, R(Q(2)) + 1 = r(2) = 2, or R(Q(2)) = 1. By the same reason, since R(1) = 1, we

must have Q(2) = 1.

3.Next, R(Q(3)) + 1 = r(3) = 1, or R(Q(3)) = 0. By the same reason, since R(0) = 0, we

must have Q(3) = 0.

4.Next, R(Q(4)) + 1 = r(4) = 2, or R(Q(4)) = 1. By the same reason, since R(1) = 1, we

must have Q(4) = 1.

5.Next, R(Q(5)) + 1 = r(5) = 2, or R(Q(5)) = 1. By the same reason, since R(1) = 1, we

must have Q(5) = 1.

6.From this point on, for any j � 6, R(Q(j mod 6)) + 1 = r(j mod 5), so we must have

Q(j) = Q(j mod 5).

5 Main Conjectures

For a rotation-like logistic map fn = e2�in



(ii) vFk
= 0 if k � 0 mod 2;

(iii) vFn+1 = 0;
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