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Abstract

In this paper, we study the dynamics of rotation-like logistic maps. In particular,
we focus on the case of rotation-like logistic maps with Fibonacci quotient, including
related parts on Hubbard tree, kneading invariant and kneading map. We shall present

theorems and conjectures on their associated kneading maps.
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2 Introduction

At the beginning of the twenty- rst century, Ble and Douady [2] introduced a family of
logistic maps inspired from ideas originated from holomophic dynamical systems. Despite
the connection between the dynamics of logistic maps and holomorphic dynamics, there has
been little study carried on from the perspective of both areas. Our goal is to study the
kneading invariant and the kneading map of the logistic maps in Ble-Douady’s family. In
this paper, we shall only study one particular subset of these logistic maps: rotation-like

logistic maps with Fibonacci quotient.

3 Preliminaries

3.1 Basic Concepts in Complex Dynamics

A discrete dynamical system (X;f) is a space/set X along withamap f : X ¥ X,
where X is our \system", and f is \the law of dynamics".

De nition If f(z) =z, then z is called a xed point of f. More generally, if f"(z) =z and
f"(z)&z81 m n 1, thenz=2 ¥ f(2)=2z, ¥ f2(2) =12, 1 ' YD) =1z, 1
is called a periodic orbit of period n.

De nition Let z be a xed point of f. If 9U, a neighborhood of z such that f(U) U and
8z 2 U, we have lim, s 1 T"(2%) = z, then z is called an attracting xed point. If instead,
z is in an periodic orbit of period n, then z =z, ¥ f(z) =z, ¥ f2(2) =2, ¥ 1
" Y(2) = z, . is called an attracting periodic orbit if z is an attracting xed point of

.






ducing another special set:

Theorem (Fatou) Let p be a non-linear polynomial of order n. Then every immediate
basin of attraction for a periodic orbit contains at least one critical point of p.

Corollary There can be at most n 1 di erent attracting periodic orbits.

As a corollary in our quadratic polynomial case, the immediate basin of attraction of an
attracting periodic orbit, which has to be bounded (if jzj is large enough, pg(z) will blows
to in nity no matter what c we choose), must contain the orbit fp(0)g. Inspired by this

observation, we now de ne the following more general set, called the Mandelbrot set:

M = fc: 9A;;jp(0)j < Ac;8n 2 Ng 2

It is conjectured that M is the closure of My. We shall not discuss further on that.

It is proved by Douady and Hubbard that the Mandelbrot set is connected.

Following from our previous discussions, there might also be of some interest to consider the
collection of all points that are bounded under in nite iteration. It is called the lled Julia

set, denoted by K = K(f). The formal de nition is

K(f)=%z:9C,>0;f"(z) <C,;8n 2 Ng ?3)

Its boundary @K is called the Julia set, denoted by J = J(f). We see that Julia set is
indeed the boundary between being \blowing to in nity" and "forever bounded™ after in nite
iterations.

For a quadratic family p.(z) = z? + ¢, we denote K. to be K(p.). Actually, there is another
version of the de nition Mandelbrot sets, which is the primary version used in Ble’s paper.
Proving equivalence to our previous de nition is very nontrivial and involves the use of Green
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function, which is somewhat a characterization of \the speed of blowing to in nity”. We
shall not discuss into details here.

De nition’ The Mandelbrot set M is the collection of all ¢’s for which K is connected.
There are some very interesting properties of Julia sets. We will introduce them without
detailed proofs:

Theorem If T is a rational function, then J(f) & ;.

Theorem J is forward invariant. More speci cally, let z 2 €, then f(z) 2 J if and only if
z2J.

Theorem J(f) =J(f")8n 2 N.

There are two equivalent de nitions of Fatou set. One of them is more \intuitive", and the
other is de ned using the normal family of functions.

De nition The Fatou set is the complement of the Julia set. In other words, it is the union
of all points that are bounded under in nite iterations of T, as well as those in the basin of
attraction for 1.

The following theorem is a great illustration of what Julia and Fatou sets really mean:
Theorem The repelling orbit points of T are completely contained in J(f); on the other
hand, the attracting orbit points of £ are completely contained in € n J(f).

Let us recall how we constructed the Mandelbrot set M. The set in the rst iteration,
consisting of all the values of c resulting in an attracting xed point, denoted by M;, main
hyperbolic component, and @M, is called the main cardioid.

A point in M with an attracting cycle is called hyperbolic.

Theorem M is locally connected when restricted to the hyperbolic components.



In particular, M is locally connected when restricted to the main cardioid.
De nition The orbit of a critical point with respect to a polynomial f is called a critical
orbit. The critical orbit is preperiodic if the orbit is nite. If the critical orbits are periodic
or preperiodic (or both), then the polynomial f is called PCF (postcritically nite). In
the case that all critical orbits are periodic, T is called a center; if they are all preperiodic,
T is called a Misiurewicz polynomial. Denote the set of all critical points of ¥ by C(f).
Then the postcritical set is the union of all subsequent images of all critical points under
f.
De nition Let X, Y be topological spaces and let (X; f) and (Y;g) be their corresponding
dynamical systems. If h is a homeomorphism from Y to X such that h * f h =g,
then (OX; T) and (Y;g) are called topologically conjugate. If instead h is continuous and
surjective (but not necessarily a homeomorphism), then (X;f) and (Y;g) are called semi-
conjugate.
In some sense, we see that conjugation means \the same after a change of coordinates”.
Theorems by Koenig and Bottcher show that a polynomial map behaves \locally like a
linear or a monomial map" near its attracting xed point in the sense that the map is
conjugate to a polynomial in some open neighborhood of its xed point under a conformal
map. Therefore, the dynamics (i.e. the properties of the corresponding maps under long
iterations) of two conjugate dynamical systems are very similar.
It can be shown that when restricted to J(p.), pc is sSemi-conjugate to the angle doubling map
T X2 T: ¥ 2 whereT=R=Zis a representation of the circle with unit circumference.

In addition, our choice of can ensure that the orbit of under the angle doubling map does



not intersect the interval [3 + ;; 3 + ;1.

3.2 Hubbard Tree

Now we construct the Hubbard tree (this follows the de nition in Ble’s paper [2]). A graph
= (V; E) consists of a set of vertices V and a set of edges E, each connecting two vertices.
If in addition, is connected (intuitively, you can start from any vertex and reach any
other vertex by going through the edges in E) without a loop, then it is called a tree. For
convenience, if n edges meet at the same vertex, then the angle between any two edges is an
integer multiple of 1.
De nition A Hubbard tree is a tree that further satis es the following properties:
(1) There exists a skew-symmetric function : (I;1) ¥ T, assigning each pair of edges
meeting at the same vertex an angle, that satis es ( (I;1) = 0 if and only if | = I') and
(GO + @)= 019).
(2) Thereexistsamap :V ¥ N, called a local degree function, that assigns a degree to
each vertex, with the property 1+P( (v) 1) >1. (Here, N does notinclude 0.) If (v) >1,
then v is critical. Note that if there is no critical vertex, then 1+ I:)( vy 1)=1+0=1,
so there must be at least one critical point.
(3) There exists a homeomorphism : H ¥ H mapping vertices to vertices and edges to
edges, with the property that ( (1); (1%) = (v) (I;1°) where v is the vertex on which the
two edges meet. If "(v) = v for a positive integer n, then v is called a periodic. If v is a
critical point in addition, then its orbit is called a critical cycle. If v is not in the mage of

a critical cycle under "8n 2 N, the v is a Julia vertex; otherwise, v is called a Fatou



vertex.

(4) There existsametricd:V V ¥ N[ f0g, counting the number of edges in the shortest
path between two vertices.

(5) H is expanding. This means that for all Julia vertices v;Vv’ that are connected by an
edge I, d( "(v); "(v%)) > 1 for some n.

Here we provide three concrete examples for the Hubbard tree. Let us consider a rotation-

like logistic map



shorter half-circle (unless = 1=2, which we shall not consider here). Just for mathematical
rigor, take the closure of the two half-circles so they are both compact segments. Relabel x;
and x, on the longer half-circle as x} and x.

3. \Paste" x, and x} together (more rigorously, we can consider performing a quotient map
by identifying these two points on the two half-circles) and label it as . (We do not have
to use in our discussion below. This is just for construction.)

4. Now we have an interval. The interval goes from x; to x5 in ascending order. We can
map this interval to the real line homeomorphically and set x, = 0 for simplicity.

We can see the rst three examples in the picture below:

Now that we have a Hubbard tree, we are looking for a map such that f(Xx,) = X1, f(X1) = X»,
etc. It is not hard to imagine that there are many maps that satisfy this condition, even if
we stipulate that the map must be holomorphic.

Theorem A Hubbard tree corresponds to a unique PCF (a polynomial map that have nitely
many critical points along with their iterations under ) up to an a ne conjugation.

This theorem is critical in that we can construct our Hubbard trees with more freedom in
choosing a corresponding map.

We now introduce the notion of kneading invariant.

3.3 Kneading Invariant

Suppose we have a unimodal map f : [0;1] ¥ [0;1], which means that T is a continuous
map with one and only one maximum X, and that f(0) = 0 = f(1). Let x; be the right

limit of X,.
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Figure 1: Examples on construction of the Hubbard Tree
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De nition The kneading invariant of f is de ned as a sequence v(f) = viV,v3 , where

each v; denote the i-th digit in the sequence, and is de ned to be:
8

EO; if F1(x3) < Xo
Vi =

=1; if Fi(xg) > Xo

Here, we use xg instead of X, in order to avoid the case when M (xg) = x,.
Also, we are only considering the case where we are in the \dynamical core". In other words,

T (x0) < x



into an in nite number of blocks in a unique way through an algorithm.
The algorithm for the decomposition is as follows [8]:
1. Start with either 0 or 1, depending on whether v(f) starts with 0 or 1, and consider Ov(f)

or 1v(f) accordingly.



3.4 Kneading Map

The kneading map, compared to kneading invariant, is de ned in a much more implicit way.

De nition The kneading map Q : N ¥ N is the map that satis es:

Rom +1=r(n) (4)

The image of the kneading map of a rotation-like logistic map with Fibonacci quotient is
a repetitive sequence. In other words, there is some period p such that Q(N) = Q(N mod
p). This directly follows from the fact that the kneading invariant of f is periodic, since this

meadsotosIpck decomposition of)



De nition’ The kneading map Q : N ¥ N is the map that satis es:

SQ(n) = Sn Sn 1 (5)

4 Examples

We now compute two examples of the kneading invariant of the logistic maps with Fibonacci
quotient. Before that, we need to have a map which takes Xq to X3, X; to Xy, . This map
does not have to be unique; rather, as we have previously discussed, they only have to be
equivalent up to an a ne conjugation. In this case, just for simplicity, we use the quadratic
map F(x) = x% + ¢. Now, a requirement is that when iterated enough times (in particular,
multiples of the period of the number of points in the Hubbard tree), ¥ takes x, back to
itself. Here, we assume that the points in the Hubbard tree are mapped to the real line
and let xo = 0 be the turning point of the unimodal map f. Actually, f is not exactly a
unimodal map here, since it is not mapping from [0; 1] to [0; 1]. However, it is equivalent to
a unimodal map up to an a ne conjugation, so they have the same dynamics and therefore
can be treated equally. We are mapping the Hubbard tree to a real interval, and it does not
matter much where the interval is on the real line regarding the dynamics on the Hubbard

tree.

4.1 Case =

agllw

We can actually solve for ¢ by noting that f(xo) = f(0) = ¢ = Xy, f(X1) = ¢? +¢ = Xy,

F(x2) = (0P +C = Xg, F(x5) = ((2+0)°+0)+C = Xa, F(xa) = (P +C)P+C)+0)2+C =
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Xo = 0. Although the value of ¢ does not matter much in our discussion later, we will just
compute c as a reference. Note that since this is a polynomial, we will have multiple solutions
of ¢, which may or may not be real, and not all of them will satisfy the requirement that the
relative position of the images of Xxo must be the same as we desired. For example, the trivial
solution ¢ = 0 is not valid for our purposes, since if we take ¢ = 0, we will have Xg = X; = X»
instead of X; < Xo < X,. An unproved conjecture is that only one c is valid. The only valid
Cc hereisc 1:6254.

The kneading invariant is 01000 . The repeating part is 01000. Let us practice the block
decomposition for this map as an example:

1.Starting with the rst digit 0 and comparing the sequence of v(f) starting from the rst
digit with Ov(f) (recall that if the digit we are considering is 0, we compare the kneading
invariant starting with this digit with Ov(f); otherwise, we compare it with 1v(f)), since 1
is the second digit in v(f), and 0 is the rst digit of v(f), and 1 & 0, we stop, so the rst
block is (0).

2.Next, starting from the second digit 1 and comparing the portion of v(f) starting from the
second digit with 1v(f), since the third digit in v(f) is 0, which is equal to the rst digit in
v(f), we continue; comparing the fourth digit of v(f), which is 0, with the second digit of
v(f), which is 1, we nd 0 & 1, so we stop on this block, and the the second block is (10).
3.Next, starting from the fourth digit of v(f), which is 0, and compare the sequence of v(f)
starting from it with Ov(f): since the fth digit of v(f) is 0, and the rst digit of v(f) is O,
we continue; now, the sixth digit of v(f) is 0, and the second digit of v(f) is 1, 1 & 0, so we

stop with this block, so the third block is (00).
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4.Since the kneading invariant forward is just repeating the rst ve digits, the block de-
composition will be exactly the same as the three we did above, which means we will have
blocks (0)(10)(00) repeating forever.

Now we calculate the sequence of kneading map of f:

1.First, R(Q(1))+1=r() =1, so R(Q(1)) = 0. Since R is a strictly increasing function (a
block must have length at least 1), and R(0) = 0, we must have Q(1) = 0.

2.Next, R(Q(2)) +1 =r(2) = 2, or R(Q(2)) = 1. By the same reason, since R(1) = 1, we
must have Q(2) = 1.

3.Next, R(Q(3)) +1 =r(3) = 2, or R(Q(3)) = 1. By the same reason, since R(1) = 1, we
must have Q(3) = 1.

4.From this point on, for any j 4, R(Q(j mod 3)) + 1 = r(j mod 3), so we must have

Q@) = Q@ mod 3).

4.2 Case =

oojon

Similarly as the procedures in the last example, we have f(xy) = f(0) = ¢ = Xy, T(Xy) =
CC+c =X, F(X) = (@ +0C)*+C = x5 F(Xx3) = ((¢®+C)*+c)*+cCc = x4 F(xg) =
(((E®+c)* +c)*+c)*+c = x5, F(xs) = ((((c*+c)?+c)*+c)? +c)*+c = X6, F(xs) = (((((c*+
C)? +C)?+c)?+c)? +c)’ +¢ = X7, T(X7) = (((((% +c)? +c)?+C)? +c)* +C)? +C)?+C = X0 = 0.
By checking the relative positions of the images of X, under f for di erent c, we see that the
only valid c here is ¢ 1:7111.

The kneading invariant is 01001000 . The repeating part is 01001000. Let us practice the

block decomposition for this map:
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1.Starting with the rst digit 0 and comparing the sequence of v(f) starting from the rst
digit with Ov(f) (recall that if the digit we are considering is 0, we compare the kneading
invariant starting with this digit with Ov(f); otherwise, we compare it with 1v(f)), since 1
is the second digit in v(f), and 0 is the rst digit of v(f), and 1 & 0, we stop, so the rst
block is (0).

2.Next, starting from the second digit 1 and comparing the portion of v(f) starting from the
second digit with 1v(f), since the third digit in v(f) is 0, which is equal to the rst digit in
v(f), we continue; comparing the fourth digit of v(f), which is 0, with the second digit of
v(f), which is 1, we nd 0 & 1, so we stop on this block, and the the second block is (10).
3.Next, start from the fourth digit 0, and compare the sequence of v(f) starting from it with
Ov(f): since the fth digit of v(f) is 1, and the rst digit of v(f) is 0, we stop here, so the
third block is (0).

4.Next, start from the fth digit 1, and compare the sequence of v(f) starting from it with
1v(T): since the sixth digit of v(f) is 0, which is equal to the rst digit 0, we continue; since
the seventh digit is 0, which is not equal to the second digit 1, we stop here, so the fourth
block is (10).

5.Next, start from the seventh digit 0, and compare the sequence of v(f) starting from it
with Ov(f): since the eighth digit 0 is equal to the rst digit 0, we continue; since the ninth
digit 0 is di erent from the second digit 1, we stop here, so the fth block is (00).

6.Since the kneading invariant forward is just repeating the rst eight digits, the block
decomposition will be exactly the same as the three we did above, which means we will have

blocks (0)(10)(0)(10)(00) repeating forever.
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Now we calculate the sequence of kneading map of f:

1.First, R(Q(1))+1=r(1) =1, so R(Q(1)) = 0. Since R is a strictly increasing function (a
block must have length at least 1), and R(0) = 0, we must have Q(1) = 0.

2.Next, R(Q(2)) +1 =r(2) = 2, or R(Q(2)) = 1. By the same reason, since R(1) = 1, we
must have Q(2) = 1.

3.Next, R(Q(3)) +1 =r(3) =1, or R(Q(3)) = 0. By the same reason, since R(0) = 0, we
must have Q(3) = 0.

4.Next, R(Q(4)) +1=r(4) = 2, or R(Q(4)) = 1. By the same reason, since R(1) = 1, we
must have Q(4) = 1.

5.Next, R(Q(B)) +1 =r(5) = 2, or R(Q(5)) = 1. By the same reason, since R(1) = 1, we
must have Q(5) = 1.

6.From this point on, for any j 6, R(Q(j mod 6)) + 1 = r(j mod 5), so we must have

Q@) = Q@ mod 5).

5 Main Conjectures

For a rotation-like logistic map f, =e? ' n



(i) vg, =0if k 0 mod 2;

(iil) Veyoy = 0;
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