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Introduction

A magma is an algebraic structure (S, f) consisting of an underlying set S and
a single binary operation f : S2 ! S. Much is known about specific families of
magmas (semigroups, monoids, groups, semilattices, quasigroups, etc.) as well as
magmas in general as treated in universal algebra. We seek to relate the study of
magmas to the study of corresponding geometric objects. In order to do this we
first analyze unary operations by way of their graphs. We show how function com-
position can be encoded by matrix multiplication, then generalize this to binary
function composition. We characterize the spectra of the graphs of unary opera-
tions, show that all such graphs are planar, and present some initial results on the
corresponding constructions for magmas.
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There are two competing conventions here. Usually when we regard matrices as
linear transformations we think of them as mapping column vectors on the right
into row vectors. Graph theory indicates the opposite behavior, with function
application occurring on the right.

1.3. Graph Treks. Recall that given a graph G = (V, E), which need not be
simple and may be directed, we have the following theorem.

Theorem. Let A be the adjacency matrix for G with a given vertex ordering. Then
(Ak)

ij

for k 2 N is the number walks of length k from v
i
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in a given column j giving the total number of valid treks beginning at any vertex
s

i

and ending at s
j

, which is also the number of solutions x = s
i

to fQ(x) = y for
a fixed y = s

j

. We can take the total succinctly by summing over all rows i, so the

number of solutions x is
P
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2.1. Operation Hypergraphs. We can view a binary operation as a set

{(s
i

, s
j

, f(s
i

, s
j

)) | s
i

, s
j

2 S}.

This set can be seen as the edge set of a directed 3-uniform hypergraph[1].

Definition (Operation hypergraph). Let f : S2 ! S be a binary operation. The
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that Ḡ
f

contains a subgraph H which is a subdivision of K5. This subgraph contains
five vertices, say s1
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Again let (S, f) be a magma. We demonstrate a technique for generating alge-
braic conditions which imply that the embedding dimension of (S, f) is at least 4.
Recall that the Klein bottle cannot be embedded in R3 without self-intersection.
We know the minimal triangulations of the Klein bottle[15] so we can orient such a
triangulation to obtain a minimal algebraic rule which implies that a given magma
has embedding dimension at least 4.

Consider the triangulation Kh12 from [15], which is pictured below. The hori-
zontal edges are to be identified in parallel and the vertical edges in antiparallel.

a

b

c

d

e
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a b c d e f g h i
a · c d e f g h i b
b · · · · · · · · ·
c · · · i b · · ·
d · · · · i · · ·
e · · · · · c b · ·
f · · · · · · i · c
g · · · · h · · · b
h · · · · · · · · e
i · · · · · · · · ·

This “forbidden substructure” cannot appear in any magma with embedding
dimension 3. We can extend our earlier example of magmas with embedding di-
mension 3 to produce a magma with embedding dimension 4. For each pair x, y
for which · appears in the table above define f(x, y) = x. None of these new de-
generate faces will change the embedding dimension of the magma, so the resulting
operation has embedding dimension 4.

It is immediate that embedding dimension can only decrease when considering a
submagma of a given magma. What relationship does embedding dimension have
with taking homomorphic images and products of magmas? If it only goes down
then we know that “magmas of embedding dimension at most k” is a variety and
hence an equational class by Birkho↵’s Theorem[2]. This would tell us that there
is a set of identities which characterize such magmas (and hence their operation
complexes). If not, we can show that it is impossible to produce such a characteri-
zation.

3.2. Spectrum Calculation. There is a very direct relationship between the spec-
trum of an operation digraph and the dynamics of the original function.

Theorem. Let f : S ! S be a function on a set S of size n. Let c1, . . . , c
r

be
the lengths of the periodic cycles of S under f , with multiplicity. For each c

i

the
matrix A

f

has all of the cth
i
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point of S after n applications of f , we see that

An!
f

=


I O
C O

�

where I is the k ⇥ k identity matrix and C is some other matrix.
Given such a lower triangular matrix we have that det An!

f

= (det I)(det O) This
implies that

det(�I � An!
f

) = (� � 1)k�n�k,

so the spectrum of A consists of k roots of unity and must be the spectrum of A
f

,
as well. ⇤

In contrast with this complete description of the spectrum of an operation di-
graph, no such generic description of a spectrum for a uniform hypergraph is known
to this author. A possible future project is to use the special case of operation hy-
pergraphs as a stepping stone to the general case.
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