


• Preimage resistance: For a given hash value h, it is computationally infeasible to find



The set of all even permutations is a group under functional composition and is called

the alternating group on X. The symbol A



3.2. The SubBytes-like function (�-function).

Definition 3. Let � : Mm,n(GF(pr)) ! Mm,n(GF(pr)) denotes the mapping defined as a

parallel application of m · n bijective S-box-mappings �ij : GF(pr) ! GF(pr) and defined by

�(a) = b if and only if bij = �ij(aij) for all 0  i < m, 0  j < n.

Each S-box mapping consists of an inversion, multiplication by a fixed A 2 GF(pr), and

addition of a fixed element B 2 GF(pr) i.e. it is a mapping of the form Ax�1 + B where

A, B 2 GF(pr) are fixed. For convenience we define this map on all of GF(pr) so that it

maps 0 to B, and any nonzero x



Definition 6. The function f is said to be k-near if |Domain(f)| � |Range(f)| = k.2

Definition 7. The k
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Definition 12. A transversal of a Latin square is a set of n



Definition 16 (k-Transversals). A k-transversal of a Latin square L of order n, where

1  k  n, is a list of n entries of L such that no two entries are in the same row, no two

entries are in the same column, and there are k distinct symbols in the list.

5.3. Results in Zn.

Lemma 17. If f is a permutation over Zn that is the sum of the identity with another

permutation then f has a fixed point.

Proof. The identity maps every element to itself. Because the function we are adding to the

identity is a permutation, it must be true that the additive identity will be added to some

element in the identity permutation. For this element, the identity mapping will remain

unchanged and yield a fixed point. ⇤

Theorem 18. Let f be a function defined over Zn be the sum of the identity permutation

with another permutation. Then |range(f (n�1))| 6= 2.

Proof. For a function to have a terminal range of 2 it is required that the total number of

elements that are a part of some cycle is 2. This can manifest in two ways: two 1-cycles or

one 2-cycle.

Case 1: Two 1-Cycles

Suppose f does contain two 1-cycles. A 1-cycle is a fixed point in our function. If we have

two 1-cycles then there are two elements, i and j, such that i 7! i and j 7! j. If f is the sum

of the identity with some other permutation then when we subtract the identity we should

be left with a permutation. However, if we subtract the identity from a function that maps

i to itself and



(a)



by pigeon-hole principle, we know that there are exactly two of ci’s that are the same, say

ck = cl = h (h 6= t), and the rest of ci’s are some arrangement of {1, 2, · · · , n}/{t, h}. By

summing up the quality ai + bi = ci over all i’s, we have

Pn
i=1(ai + bi) ⌘

Pn
i=1 ci mod(n),

Pn
i=1 ai +

Pn
i=1 bi ⌘

Pn
i=1 ci mod(n),

n

n



Lemma 21. If f(i) = 2, then f(i + k(e � 2)) = 2



elements in the range of (⇡ + id) sending to them, since all the a1, a2, · · · , at have already

disappeared from the ith step to (i+1)th step and Thus b1, b2, · · · , bl will vanish at this time.

By the fact that l  t, we are confirmed that the inequality holds. ⇤

Definition 25. Let #(k, s) denote the number of permutations ⇡ that has size s after

composing ⇡ + id with itself k times, where id is the identity permutation.

Corollary 26. If n is odd, then #(n � 2, 2) = #(n � 1, 2) = 0.

Proof. It su�ces to show that #(n � 2, 2) = 0. Suppose not, then the size decreases at least

1 from the step n � 2 to step n � 1. By Theorem 24, we know that the size decreases at

least 1 from the ith step to (i + 1)th step, where i = 1, 2, · · · , n � 3. This will imply that the

function f with |range(f (n�2))| = 2 is initially from a function (⇡ + id) that has size at least

2 + 1 ⇥ (n � 3) = n � 1. But according to the Theorem 19 d) the range cannot be n � 1 since

n is odd, neither could it be n as in this case (⇡ + id) will be a permutation and arbitrary

times of composition of permutation result in permutation rather than function of size 2.



missing from the one-line notation, otherwise the size is  n �



And let’s call the possible size of (⇡ + id) in this case the initial size for convenience.

Case 1 : When n is even, we deduce from the previous statement that the y-step function

(⇡+id)y might be initially degenerated from a 1-step function has at least size n�1. However,

by Theorem 27 this is impossible since it only loses size by 1 at the first time of composition

rather than 2. Also, the initial size cannot be n because if (⇡ + id) is of size n then it’s a

permutation, and so is (⇡ + id)y.

Case 2 : When n is odd, the initial size is n, which means that (⇡ + id) is a permutation.

Consequently, either case yields contradiction. So there’s no such function (⇡ + id)y of

size 1 that previously comes from (⇡



Corollary 31. The number of terminally 1-near permutations is even.

5.4. All the stu↵



Proof. Let f 2 F1t. Consider the graph representing f . Since f is terminally one near, the

graph necessarily contains a subset A of size |A| = n � 1 on which f acts as a permutation,

as well as an excluded element which is mapped into A. There are n choices for the excluded

element, n�1 choices for its target (if it were a fixed point then it wouldn’t be excluded), and

(n � 1)! configurations for the permutation on A. Taking the product yields n(n � 1)(n � 1)!

possible functions f , which simplifies to the result. ⇤

Theorem 34. F1(n) has n-1 equivalence classes determined by

✓
nP

i=1
f(i)

◆
mod n.

Proof. F1(n) is the set of 1-near permutations on n elements. It is known that

✓
nP

i=1
i

◆
mod n =

n
2 . To find the sum of an arbitary 1-near permutation we consider the following sum for

x, y 2 {1, 2, · · · , n} and x 6= y:

1 + 2 + 3 + · · · + n � x + y.

The first n elements will sum to n
2 mod n. So we have

n

2
� x + y.

From the constraints on x and y we have that 1  | � x + y|  n � 1. Therefore, we have

n

2
+ 1 

⇣n

2
� x + y

⌘
mod n  n

2
+ n � 1.

This allows for every value on the range [1,n] with the exception of n
2 . ⇤

Theorem 35. The n-1 equivalence classes of F1(n) are determined by

✓
nP

i=1
f(i)

◆
mod n

are the same size.

Proof. We know that the sum of a 1-near permutation mod n is n
2 � x + y for some x, y 2

{1, 2, · · · , n} with x 6= y. The n � 1 equivalence classes are determined by the value of this

sum. Let c = n
2 � x + y. Then, rewriting, we see that for a given c, x is determined by y.

So, in a particular class, c, there are n choices for an x, y pair that will satisfy the equation.
16



Each pair will result in a distinct function with a di↵erent repeated element. For each of



Consider Mn,n(GF (pr)) (n � 2) and the group formed by all the invertible matrices in it,

namely GL(n, GF (pr)).



In addition, an immediate consequence is that the number of the transversals over the



[11]



[28] T. Van Le, R. Sparr, R. Wernsdorf, and Y. Desmedt, Complementation-like and cyclic properties of

AES round functions, Proceedings of the 4th International Conference on the Advanced

Encryption Standard, Vol. 3373 (2005), 128-141.

[29] W. Mao, Modern Cryptography: Theory and Practice, Prentice Hall, (2003).

[30] S. Mattarei, Inverse-closed additive subgroups of fields, Israel Journal of Mathematics Vol. 159

(2007), 343–348.

[31] B.D. McKay, J.C. McLeod and I.M. Wanless, The number of transversals in a latin square, Des. Codes

Cryptogr. 40 (2006), 269-284.

[32] L. Miller,Generators of the Symmetric and Alternating Group, The American Mathematical

Monthly, Vol. 48, (1941), 43 – 44.

[33] S. Murphy, K.G. Paterson, P. Wild, A weak cipher that generates the symmetric group, Journal of

Cryptology 7 (1994), 61–65.

[34] S. Murphy, M.J.B. Robshaw, Essential algebraic structure within the AES, Proceedings of CRYPTO

2002 Vol. 2442 (2002), 1–16.

[35] National Institute of Standards and Technology (US), Advanced Encryption Standard (AES), FIPS

Publication 197, (2001).

[36] National Institute of Standards and Technology (US), Recommendation for the Triple Data Encryption

Algorithm (TDEA) Block Cipher, Special Publication 800-67 (2004).

[37] K.G. Paterson, Imprimitive permutation groups and trapdoors in iterated block ciphers, Lecture Notes

in Computer Science, Vol. 1636 (1999), 201– 214.

[38] S. Patel, Z. Ramzan, G. S. Sundaram, Luby-Rackof Ciphers: Why XOR Is Not So Exclusive, Lecture

Notes in Computer Science, Vol. 2595 (2003), 271–290.

[39] D. M. Rodgers, Generating and Covering the Alternating or Symmetric group, Communications in

Algebra, 30 (2002), 425–435.

[40] P. Rogaway and T. Shrimpton, Cryptographic Hash-Function Basics: Definitions, Implications, and

Separations for Preimage Resistance, Second-Preimage Resistance, and Collision Resistance, Fast Soft-

ware Encryption, Lecture Notes in Computer Science , Vol. 3017 (2004), 371–388.

[41] Martin Schla↵er, 2011.



[43] R. Sparr and R. Wernsdorf, Group theoretic properties of Rijndael-like ciphers, Discrete Applied

Mathematics, Vol. 156 (2008), 3139–3149.

[44] W. Trappe and L. C. Washington, Introduction to Cryptography with Coding Theory, Pearson Edu-

cation, (2006).

[45] R. Wernsdorf, The round functions of Rijndael generate the alternating group, Lecture Notes in

Computer Science, Vol. 2365, Springer-Verlag (2002), 143–148.

[46] A. Williamson, On Primitive Permutation Groups Containing a Cycle, Mathematische Zeitschrift,

130 (1973), 159–162.

[47] I. M. Wanless, Transversals in Latin squares: A survey, Surveys in Combinatorics 2011, London Math.

Soc. Lecture Note Series 392, Cambridge University Press, (2011) 403–437.

22


