Topology Prelim Fall 2020.

March 9, 2023

There are 5 questions in this exam each consisting of 3 subquestions. The best 8 out of 15 subquestions will be used as your course nal score for MATH440. If you are a graduate student then this nal also counts as a

(b) Give an example of a space X and a subset A = X with 2 A, the closure of A in X

codimension 1 submanifold of \mathbb{R}^n for all a > 0. Finally prove that X_a is di eomorphic to X_b for any a; b > 0.

(c) In this question you may use that metrizable spaces are normal/ T_4 without proof. Use partitions of unity to prove the

Smooth Urysohn Lemma: Let M be a smooth manifold and A and B disjoint closed subsets in M. Then there exists a smooth function F : M ! [0;1] such that F = 1 on A and F = 0 on B.

5. (a) Let S^k denote the standard k-dimensional sphere (the set of unit vectors in \mathbb{R}^{k+1}). Prove, using Sard's theorem, that every smooth map f: $S^k \neq S^n$ with k < n is smoothly homotopic to a constant map.

(b) State the conditions of intersection theory i.e., the conditions on

$$f: X \neq Y$$

and Z = Y such that the mod-2 intersection number $I_2(f;Z)$ is defined. State the homotopy invariance property of these intersection numbers. Use this to find a map $f: S^1 \neq T^2$ where T^2 is the 2-dimensional torus such that $f: S^1 \neq T^2$ is not smoothly homotopic to a constant map. Then explain why this shows that S^2 is not different to T^2 . (For this last part you may use the result of 5(a) freely even if you did not answer that subquestion. You may also describe f and compute intersection numbers $I_2(f;Z)$ pictorially though the rest of your answer should be more completely written out). (c) State the conditions under which the mod-2 degree of a map $f: X \neq Y$ can be defined. State the homotopy invariance and boundary map properties of this deg_2 . Use deg_2 to prove that the following complex equation:

$$z^{9} + \cos(jzj^{2})(10z^{8} + 3z^{5} + \sin(jzj^{2}) + 3) = 0$$

has a solution z 2 C.