MATH 471 FINAL EXAM DECEMBER 20, 2022

Instructions:

4. Let denote the restriction of Lebesgue measure on R to (1; 7) R. For $f \ge L^2((1; 7);)$, let

$$G(y) := \int_{1}^{Z} \frac{f(x)}{x+y} d(x); \quad y = 1;$$

Prove that G is well-de ned, bounded and continuous on (1; 7).

5. Let *V* be a Banach space and *V* its continuous dual. Suppose $fT_ng_{n=1}^7 \quad V$ is a sequence of bounded linear functionals on *V* such that, for every $f \geq V$, $\lim_{n \leq T} T_n f$ exists (the limit being taken with respect to the norm on F.)

Prove directly that there exists a bounded linear functional $T \ge V$ such that jT_nf $Tfj \ne 0$ as $n \ne 1$ for all f.