- 1a) Prove that any finite field must have order a power of a prime ρ and for each \cap \mathbb{Z}^+ , there is *one and only one* field of order ρ^{\cap} within a fixed algebraic closure of $\mathbb{F}_{\rho} = \mathbb{Z}/\rho\mathbb{Z}$.
- b) Prove that all finite extensions of \mathbb{F}_{ρ} are both normal and separable. Briefly explain why this implies that all finite extensions of all finite fields must be both normal and separable.
- c) Prove that the Galois group over \mathbb{F}_{ρ} of any finite extension of \mathbb{F}_{ρ} is cyclic and give an explicit generator of such a Galois group, being sure to completely justify your answer. Briefly explain why this implies that all finite extensions of all finite fields must be cyclic.
- d) If $E = \mathbb{F}_q = \mathbb{F}_{p^d}$ is a finite field with $q = p^d$ elements, and $K = \mathbb{F}_{q^r}$ is an extension of E of degree F, give a generator for Gal(K/E). You do **not** have to justify your answer to this part.