1) Define the n^{th} cyclotomic polynomial $\Phi_n(x)$ over an arbitrary field k where the characteristic of k is either 0 or a prime ρ not dividing n.

b) Prove that $\Phi_{\Omega}(x)$ is irreducible over \mathbb{Q} .

) Give an example if possible, and briefly explain why your example works. If no such example exists, briefly explain why this is so.

) an integer n = 5 satisfying the property that $\Phi_n(x)$ is \mathbf{b} over \mathbb{F}_p for all primes p not dividing n.

) an integer n = 5 satisfying the property that $\Phi_n(x)$ is **b** over \mathbb{F}_p for all primes p not dividing n.

) This relates to material in the book, not to a HW problem. To answer this question, you can use the additive form of Hilbert's Theorem 90 without proof.

Let *k* be a field in characteristic $p \neq 0$. Prove each of the following.

) Let K be a cyclic extension of k of degree p. Then K = k(-) for some -K that is a root of a polynomial $x^p - x - a$ for some a - k.

b) Conversely, for any a = k, the polynomial $x^p = x = a$ either has one root in k, in which case, all its roots are in k, or it is irreducible. Moreover, in the latter case, k(-) is Galois and cyclic of de