A II P /M 437 F M 12, 2014

1) Let α and β be algebraic over F. Let $f(x)=\mathrm{Irr}(\alpha,F,x$

Complex analysis 467 { Final exam

May 8, 2014

Please prove the following, justifying all statements.

- 1. Give two proofs of the fundamental theorem of algebra, with the rst proof using Liouville's theorem, and the second using Rouche's theorem.
- 2. Let f be an entire function and suppose there exists constants C > 0 and D such that

$$jf(z)j \quad Cjzj^n + D \text{ for all } z \ge C.$$

Use Cauchy's estimates to prove that f is a polynomial of degree at most n.

3. Prove that

$$\int_{0}^{7} \frac{dx}{(x^{2}+1)^{2}} = \frac{1}{4}$$

making use of the contour de ned by the line segment [R; R] on the real axis and a large half-circle centered at the origin in the upper half-plane. (see picture)

- 4. Argue using Hadamard's factorization theorem that $e^{z} + z^{2} + 1 = 0$ has in nitely many solutions in C.
- 5. Let be a bounded simply connected domain in C, and let and be two distinct points in . Let $_1$ and $_2$ be two conformal maps from / . Suppose $_1() = _2()$ and $_1() = _2()$. Prove that $_1 = _2$. [Hint: one approach uses Schwarz's lemma.] (Side note: this is also true without the bounded condition.)

Math 453 Final Exam May 3, 2014 9:00 - 12:00

Name : _____

The exam consists of 5 questions.

Please read the questions carefully.

Show all your work in legibly written, well-organized mathematical sentences.

GOOD LUCK !!!

1. (20 pts) a) State the Regular Value Theorem.

b) Prove that the subset *H* of the Euclidean space \mathbb{R}^3 of all the points (x; y; z) of \mathbb{R}^3 satisfying $x^3 + y^3 + z^3 = 2xyz = 1$ admits a C^7 2-manifold structure.

2. (20 pts) For the following vector elds X and Y and di erential forms and on \mathbb{R}^3 , calculate the Lie bracket [X; Y] and the Lie derivatives L_X and $L_{[X;Y]}(\land)$: $X = x \frac{@}{@X} \quad Z^2 \frac{@}{@Y}$ and $Y = Z \frac{@}{@Y} + x^3 \frac{@}{@Z}, \quad = e^x dx + y dy + z dz, \quad = dx \land dy \land dz.$ a) [X; Y] =

b)
$$L_X =$$

c) $L_{[X;Y]}(\land) =$

3. (20 pts) **a)** Determine whether the two-form $! = zdx \wedge dy$ is exact in \mathbb{R}^3 .

b) Let *M* denote the embedded submanifold of \mathbb{R}^3 given by M = fz x^2 $y^2 = 1g$. Determine whether the restriction of *!* to *M* is exact. **4.** (20 pts) Let C be the punctured complex plane, C f(0;0)g. Let z = x + iy be

- **5.** (20 pts) Show that the Laplacian = dd + d d has the following properties : **a)** is self-adjoint, that is $h \ ! ; i = h! ; i$.

b) A necessary and su cient condition for ! = 0 is that d!