1 Algebra II

- 1. Prove that a Dedekind domain R is a UFD if and only if it is a PID.
- 2. Prove that x^4 2 is solvable in two ways: rst by showing the splitting eld is a radical eld extension of Q , and next by showing its Galois group is solvable.
- 3. Let R be a local ring and $h: R \perp S$ a ring homomorphism. Prove that the image $h(R)$ is a local ring.
- 4. Recall *Noether's normalization theorem*: if B is a nitely generated kalgebra, where k is a eld, then there exists a subset f_{y_1} :::; $y_r g$ of B such that the y_i are algebraically independent over k and B is integral over $k[y_1; \ldots; y_r]$.

Prove Zariski's lemma: Let A be a nitely generated k-algebra. If I is a maximal ideal of A, then $A=I$ is a nite extension of k. (One approach is to use Noether normalization on $A=I$.)

5. Let G be an abelian group. Prove that any irreducible representation of G is of order 1.

2 Complex Analysis

1. Let f ; $g : D$! C be two holomorphic functions de ned on a domain D C such that

$$
f(z) + \overline{g(z)} \, 2 \, \mathsf{R}; \qquad (\partial) z \, 2 \, D.
$$

Show that there exists necessarily a constant $A \, 2R$, with

$$
f(z) \quad g(z) = A; \quad (8)z 2 D.
$$

2. Determine, with proof, whether there exist functions f which are holomorphic in a neighborhood of 0 and satisfy

$$
n^{5=2} < f \frac{1}{n} < 2n^{5=2}, \quad (8)n \quad 1.
$$

3. For $a > 0$ xed, compute, using the residue theorem and explaining all steps,

$$
\int_{0}^{2\pi/3} \frac{x^2}{(x^2+a^2)^3} dx
$$

4. Prove that for all $>$ 1 the equation

$$
Z = e^Z
$$

has precisely one root in the half-plane Re z 0.

6. Find a conformal transformation $w = f(z)$ which maps the angle jarg $zj <$ $=4$ into the unit disk $jwj < 1$ and veri es

$$
f(1) = 0
$$
; $\arg f^0(1) = 0$.

3 Geometry

1. a) Explain why you need at least two coordinate charts to cover a compact manifold.

b) Check whether the following maps are local dieomorphisms. Are they also global dieomorphisms ? Explain why.

 $F(x; y) = (\sin(x^2 + y^2))\cos(x^2 + y^2))$ $F(x; y) = (e^x \sin y; e^x \cos y)$ $F(x; y) = (5x; ye^{x})$

2. Let (r_i) be the polar coordinates de ned on \mathbb{R}^2 outside of the origin.

a) Write the 1-forms dr , d in terms of the ordinary coordinates x ; y.

b) Write the volume form $dx \wedge dy$ in terms of dr and d. (hint: use the pullback of dierential forms.)

3. Show that the Laplacian has the following properties :

a) $=$ (Show also that this property implies that if ℓ is a harmonic form, so is \prime).

b) is self-adjoint, that is $h \cdot l$; $i = h!$; i.

c) A necessary and sucient condition for $! = 0$ is that $dl = 0$ and $d / = 0$.

d) Let M be connected, oriented, compact Riemannian manifold. Then a harmonic function on M is a constant function. Also if $n=$ dim M, then a harmonic n-form is a constant multiple of the volume element $dvol_M$. (hint: use part (c))

4. (Proof of Hodge Theorem) Show that an arbitrary de Rham cohomology class of an oriented compact Riemannian manifold can be represented by a unique harmonic form. In other words, show that the natural map H^k ! $H^k_{DR}(M)$ is an isomorphism. Here H^k denotes the set of all harmonic *k*-forms on M and $H^k_{DR}(M)$ denotes the *k*-dimensional de Rham cohomology group of M.

(hint: use Hodge decomposition theorem which says that on an oriented compact Riemannian manifold, an arbitrary k form can be uniquely written as the sum of a harmonic form, an exact form and a dual exact form.)

5.

6. Consider the two form $I = x dy^{\wedge} dz + y dz^{\wedge} dx + z dx^{\wedge} dy$ and the vector eld $v = y \frac{e}{\sqrt{e}} + x \frac{e}{\sqrt{e}}$. Show that the Lie Derivative of ! in the direction of v is zero. This means that I is invariant under the ow of I_t , the one parameter group of transformations generated by v.