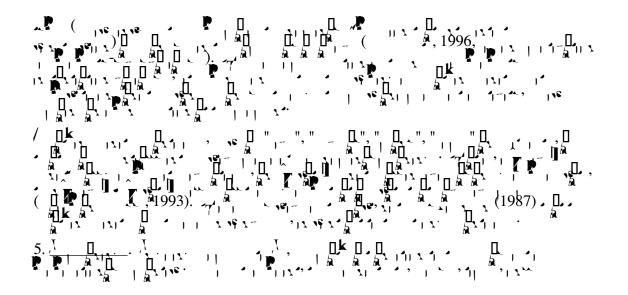

2.

 $\begin{bmatrix} \mathbf{k} \\ \mathbf{k} \\ \mathbf{k} \end{bmatrix} = \begin{bmatrix} \mathbf$


 $3. \square_{x_1} \times \blacksquare_{x_2} (\overset{\mathcal{A}}{\xrightarrow{}} 1 \times 1 \overset{\mathcal{A}}{\xrightarrow{}} \square_{x_1} (\overset{\mathcal{A}}{\xrightarrow{}} 1 \overset{\mathcal{A}}{\xrightarrow{}} 1 \overset{\mathcal{A}}{\xrightarrow{}} 1 \overset{\mathcal{A}}{\xrightarrow{}} 1 \overset{\mathcal{A}}{\xrightarrow{}} \square_{x_1} (\overset{\mathcal{A}}{\xrightarrow{}} 1 \overset{\mathcal{A}$

 $\begin{array}{c} \mathbf{P} & \mathbf{$

$$\begin{array}{c} \mathbf{x} : \cdot \mathbf{n} \\ \mathbf{x} \\$$

 $3. \underbrace{\mathbf{k}}_{\mathbf{k}} \square \square \square \square \square \square_{\mathbf{k}} \square_{\mathbf{k}}$ $\begin{array}{c} \mathbf{X} & \mathbf{U} & \mathbf{V} & \mathbf{P} & \mathbf{P} & \mathbf{P} & \mathbf{V} & \mathbf{U} & \mathbf$

 $\begin{bmatrix} \mathbf{P} \\ \mathbf{A} \\ \mathbf{A}$