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A common question that linguists have asked me is “what is a connectionist 
model?”  The answer to that question is surprisingly quite simple.  A 
connectionist model is really an algorithm for turning some input (which 
presumably maps onto something of psychological or linguistic interest) into 
some other output (which may map onto some data).  In this regard it is very 
similar to any other cognitive or linguistic model that has been implemented 
computationally.  Take, for example, an Optimality Theory Grammar.  An OT 
grammar turns a collection of phonological forms from Gen (the input) into the 
actual production (the output).  The only difference between this grammar and a 
neural network is that the kinds of computations we are allowed to use in 
creating the algorithm are different. OT prescribes one type of computation 
(constraint satisfaction), while connectionist models use computations that are 
very loosely based on the kinds of computations that neurons and populations of 
neurons might perform.  Under this view, connectionism is simply a set of 
(mostly) agreed upon guidelines for what sorts of algorithms are appropriate for 
describing cognitive behavior. 
 
Architecture 
 
All connectionist models are composed of two simple concepts: nodes (AKA 
neurons or units or cells) and weights (AKA connections or synapses).   
 
A node can be considered a highly idealized representation of a neuron. It has an 
activation (or firing rate ) that tells us how strongly that neuron is firing.  In a 
very simple case, a node might be assigned to a real world concept such as a 
specific phoneme, /b/.  It’s neighboring nodes may represent other phonemes, /d/ 
and /t/.  In this case, the activation of the /b/ node relative to the other nodes 
would tell us how strongly the system believes a /b/ was present in the input.  
Oftentimes the activation of a node will be simplified by saying the node is 
either on (firing ) or off (not firing , inactive).  Keep in mind that very few 
connectionist models have nodes with discrete activation levels—on or off 
simply refer to the node having a lot of activation (relative to the other nodes) or 
a little. 
 
Nodes are organized into layers (AKA arrays or vectors).  Each layer is a 
cluster of nodes that are [usually] functionally related.  For example, one layer of 
a network may consist of the group nodes that correspond to each phoneme; 
another layer may have nodes that correspond to words.   
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In any model, one or more layers is designated the 
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nodes are the values that we will attempt to relate to the empirical data that we are 
trying to evaluate.  For example in a network designed to categorize phonemes, 
the input layer might represent a digitized waveform, and the output layer 
would have a node corresponding to each phoneme.  The way in which the 
activation of nodes in the output layer is related to the empirical data or 
behavior is called the linking hypothesis (because it links models and data).  For 
example, for our phoneme categorization example, our linking hypothesis might 
be that the model will choose the phoneme with the most activation as the 
phoneme it heard.  I’ll talk more about linking hypotheses later. 
 
Layers of nodes that do not receive input or provide output are called hidden 
layers.  These layers compute some sort of intermediate representation (between 
input and output layers).  Many modelers dispense with the input, hidden, and 
output layer designations all together and simply refer to layers by what they 
designate.  The TRACE model (McClelland and Elman, 1986), for example has a 
feature layer, a phoneme layer, and a word layer, but none of them is 
designated the output layer.  TRACE, in fact, can use either phonemes or words 
as the output depending on the task at hand.  In models like these, one must think 
about the logical flow of information is a psychological sense if you wish to 
determine the input and output layers.  Many models are described simply as 2-
layer or 3-layer networks (or more).  A 2-layer network will necessarily have 
only an input and output layer.  A 3-layer network will have both of these plus 
one hidden layer.  A 4-layer network will have two hidden layers. 
 
In the remainder of this paper, whenever I refer to simply input or output, I will 
be referring to the entire input or output layers (i.e. the pattern of activations of 
across node in the layer).   
 
Often times, a layer of nodes is thought of as a set of coordinates in a 
multidimensional space.  This is easiest to visualize for a network of two nodes.  
The activation of the first node could be considered the X-coordinate.   The 
activation of the second node would be the Y-coordinate.  Then any particular 
pattern of activations across the two nodes can be thought of as a unique point in 
a 2-D coordinate system.  So if the input activations for the two nodes were .5 and 
.8, we could talk about the input as the single point <.5, .8>. 
 
Of course, when we move up to larger networks we won’t be able to visualize a 
16 dimensional space.  However, we can still talk about one, and this spatial 
metaphor is used frequently.  Under this metaphor, the input space would consist 
of all regions of the possible N-dimensional space that are used in the network 
(where N=number of inputs).  The output-space is the corresponding regions in 
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M-dimensional space (where M=number of output nodes).  People often refer to 
the dimensionality of a space (which is simply the number of nodes).  Then when 
information is passed from an input space of high dimensionality to an output 
space of lower dimensionality, the information is undergoing dimensionality 
reduction—it must be compressed (and some information invariably lost) in 
order to “fit” in the lower dimensionality space.  This forces the network to make 
group some inputs together and discard others according to the correlations it 
finds in its inputs.  They types of categorizations it makes may be of ultimate 
interest psychologically.   
 
This way of describing network behavior spatially provides a convenient way of 
describing a network.  When activation patterns change, we can talk about the 
network moving to a new point in the input space.   Moreover modelers often 
speak of learning (which I will discuss shortly) as a search through the output 
space.  Finally, dimensionality reduction is often thought of as a form of 
information compression (as a network may have to represent 3-D information, 
for example, in only two dimensions).  Dimensionality reduction is also a 
common concept used to describe statistical techniques such as factor analysis, 
clustering, and multidimensional scaling (if you don’t know these terms, that’s 
fine, I merely throw them out to show that the analogy can be helpful in relating 
neural network computations to other types of computational tools). 
 
In a network nodes are connected to each other by weights (AKA synapses, 
connections).  Each weight represents the amount of activation that can be 
passed by one node to another.  If an input node is highly active and it has a 
strong connection to an output node, that output node will also be highly 
active.  If it has a weak connection that output node will not be highly active.  
We’ll go over the details of this in a moment.   
 
The set of all weights between two layers is termed the weight matrix (for 
reasons we’ll see shortly).  When a model is built, the weight matrix often starts 
as a matrix of small random numbers (as we will discuss, it will be modified later 
by learning).   
 
Weights can either excite (make active) or inhibit (make inactive) the nodes they 
connect.  Excitatory weights will cause a node to become more active if the 
nodes that connect to it are active.  Inhibitory weights will cause a node to 
become less active if the nodes that connect to it are active. 
 
Weights that pass information from input to output nodes (or in that direction 
between hidden nodes) are considered feed-forward connections.  Weights that 
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pass information backwards 
from output nodes to input 
nodes (or in that direction 
between hidden nodes) are 
considered feedback 
connections.  Bidirectional 
weights pass information both 
ways.  Weights that connect 
units within a layer are 
considered lateral connections.  
The most common use of 
lateral connections is lateral 
inhibition  in which nodes 
within a layer attempt to turn 
each other off.  The result of this process is that a few nodes have all the 
activation and the others have none. 
 
Consider the example network in figure 2.  This network consists of two input 
nodes and two output nodes (a 2x2 network), fully connected (each input nodes 
is connected to each output node) and feed-forward.  The activations of the input 
nodes have been set to 2 and .5 by the modeler. 
 
To compute the values of the output nodes, we will use some function of the 
inputs and the weights.  This function is called the activation function. 
 

outputtop = f( inputtop, inputbottom, weighttop->top, weightbottom->top) (1) 
 
The simplest activation function is the linear activation function.  Each output 
node is simply the sum of the activation each input node multiplied by the 
corresponding connection (weight) to that output node. 
 

outputtop = inputtop*weighttop->top  + inputbottom*weightbottom->top (2) 
outputbottom = inputtop * weighttop->bottom  + inputbottom * weightbottom->bottom  

 
This can be generalized to: 
   

Num input 

 outputy = Σ inputx* weightx->y     (3) 

   
      x=1 

  

2

.5
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We can simplify this even further with some linear algebra.  Let Output (with no 
index) become a vector of all the output activations, and Input (with no index) 
be a vector of all the input activations.   
 
 Input  =  [Inputtop   Inputbottom] = [2   .5]    (4) 
 Output =  [Outputtop Outputbottom] 
 
Now let W be defined as a matrix where the row indicates the index of the input 
node (in this case, the top node would have an index or row of 1 and the bottom 
would have an index of two), and the column indicates the index of the output 
node.  The value at each position indicates the connection strength or weight. 
   

W =  [weight1,1 weight1,2  ]     (5) 
  [weight2,1 weightb2,2]  

 
W =  [weighttop->top
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Figure 3: The logistic activation function.  For any input
activation to an output node, the logistic function outputs a
value between 0 and 1.

logistic activation function serves to truncate the possible values of the output 
activation to a value between 0 and 1.  If the sum of inputs*weights is high, the 
output node will equal 1.  If that sum is low, the output node will have an 
activation of 0. 
 
Non-linear activation functions are crucial to the success of multiple-layer 
networks because it has been shown that for any network with more than two 
layers that uses a linear activation function, a two-layer network can be built 
that performs equivalently.  Essentially, if you want to reap any advantage out of 
having more than two layers, you have to use a non-linear activation function.   
The logistic function is a particularly good one, since the logistic function is 
what is known as a basis function.  A basis function is a function that can 
approximate any other function if you add enough of them together (the loGse si musge out ofe basis fusction logistic activation fusction netould-layer 
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models can instantiate any sort of theory and should not be pigeon-holed into 
these particular lines of thought. 
 
As I mentioned previously, layers of nodes are often thought of as coordinates in 
a multidimensional space.  Under this view, the weight matrix then performs a 
remapping of a coordinate in N dimensional space to one in M dimensional 
space (where N is the number of input nodes, and M is the number of output 
nodes (see figure 4 for an example and explanation of this). 
 
Representation 
 
It is often useful to classify a model (or sometimes just a layer of a model) 
according to how it represents real world information.   
 
A localist representation is one in which each node has a label of some kind, and 
when that node is active, it is in a sense saying “I think my label is correct.”  An 
example of this is a layer of cells in which each node corresponds to a different 
phoneme, or one in which nodes correspond to various people.  Often localist 
nodes are derogatorily called Grandmother Cells, after a famous thought 
experiment in which someone asked “What would happen if your grandmother 
cell was damaged?  Would you be unable to recognize your own grandmother?”  

0 1.0 2.0

1.0

2.0

< 2.0 , 0.8 >      <1.95>

< 0.7 , 1.5 > <1.5>

Input Output
[2.0  0.8] * W = 1.95
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distributed and localist representations, and one should not worry too much about 
the debate over them. 
 
Learning 
 
As you may have noticed, most of the interesting computational work in a neural 
network is done by the weights. At this point you are probably asking yourselves: 
how do I get the weights?  That will be the topic of the next section: learning.  I 
intend to keep to the more abstract conceptual level, however, an excellent 
description of the math behind the various learning systems can be found in 
Rumelhart, and McClelland (1986) and McClelland, and Rumelhart (1986).  A 
good comparison of work in developmental psychology with connectionist 
learning can be found in Elman, Bates, Johnson, Karmiloff-Smith, Parisi and 
Plunkett (1992) 
 
The connection strength associated with each weight is usually set by a learning 
process (although in some cases, such as TRACE, they can be set by hand by the 
modeler to implement a specific theory).  Each network has a learning rule that 
essentially tells the network how to modify its weights at any given point.   
Learning rules change the weights as a function of the activations of the input 
and output units, the value of the weight itself and possibly some error signal—
how close the actual output values are to the target output values (the ones you 
want the network to output).  All learning rules have a component called the 
learning rate that determines how fast or slow the network can change its 
weights (essentially how much the network can change as a result of a single 
input). This gradual modification in weights leads to gradual change in the 
network’s performance.  The challenge to the modeler is to use learning rules 
appropriate to the task the model is given so that this change is an improvement.   
The process of modifying the weights over time is learning (also training, or 
simply running a model). 
 
Regardless of the type of learning rule used, networks can be trained in two 
ways: batch learning, and online learning.  In batch learning, the modeler 
presents the each item in the training set to the network and computes it’s 
corresponding output activations.  The weights are not changed until after the 
network has seen all of the possible input/output pairs when they will be 
modified using a learning rule.  This forces the learning rule to consider all the 
input the network will ever see before changing any weights.  The network will 
probably process the entire batch multiple times (each time is usually called an 
epoch, though this term is often misused in the literature).  Batch learning is 
often considered implausible (e.g. it seems clear that children do not wait until 
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Then at each iteration, the actual output can be compared with the target output 
(the output provided by the teaching signal) and each weight can be adjusted 
according to whether it was contributing to the correcte 
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plausible teaching signal, since brains probably do have access to their 
inputs.  However, if you are not interested in learning itself, but rather, 
on whether or not a set of inputs are learnable, the plausibility of the 
teaching signal is not as much of an issue. 

2) Hidden unit representations are important.  In a lot of cases, (such as 
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 Wxy = Wxy +  ε(Ix*Oy - Wxy)      (8) 
 
Here if I and O are active, we will increase W by a small amount (the old value of 
W multiplied by the learning rate).  If they are not we will decrease it by a small 
amount.   
 
Less common than Hebbian Learning is AntiHebbian Learning in which if an 
input and output node are simultaneously active, their connection decreases.  Of 
course, there are many unnamed variants of these two supervised learning rules, 
but they are similar in that they do not depend on a teaching signal. 
 
One common scheme for using unsupervised learning is competitive learning 
(or winner-take-all learning, see Rumelhart and Zipser (1986)).  In this scheme 
before computing the weight change, the modeler sets the output node with the 
highest activation to one and all the others to zero.  This is a simplification of a 
lateral inhibition process.  Then the weights are changed according to a 
Hebbian or other unsupervised rule.  The result of this sort of learning is that the 
model is able to find categories in the input (i.e. it will devote one output node to 
one category of inputs in the training set and a different output node to the others).  
 
Another common scheme is the Kohonen (1982) network (or Self Organizing 
Feature Map, SOFM).  A Kohonen network works very similarly to a 
competitive learning network, except that rather than exciting only the winner 
in the output layer, the winner and a number of it’s neighbors are excited 
together, before applying the learning rule.  The result of this is a distorted map 
of the input space in the output space in which regions of the input space that 
occur frequently in the training set have lots of output nodes devoted to them and 
other regions have fewer. 
 
Hebbian learning has also been used in Pattern Completion Networks (famous 
examples are the Brain-State-in-a-Box and the Hopfield Network).  These 
networks have only a single layer that serves as both the input and output layers.  
All of the nodes in this layer are connected to each other (laterally) and these 
weights are modified with Hebbian learning.  The model is trained on a series of 
patterns until the weights settle.  Then afterwards, the model can be given a 
partially complete pattern and will be able fill in the rest.  For example, a four-
node pattern completion network may be trained on the following activation 
patterns 
   

[1 0 1 0] 
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  [0 1 0 1] 
 
With training, it will learn that when node #1 is on, node #3 should also be on, 
and that when node #2 is on, node #4 should also be on.  So when presented with 
[1 0 _ 0], it will output the correct pattern, [1 0 1 0]. 
 
Noise 
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Recurrence 
 
Cognition often must unfold over time.  In order for networks to capture this, 
recurrence is often added.   Recurrence generally means that a layer’s 
activation is in some way influenced by that layer’s activation at a previous 
time.  Some recurrent networks will have layers (such as an output layer) that 
are a function of themselves (at previous times).  For example: 
 
 Outputtime=t = f(outputtime=t-1,inputs…)    (9) 
 
In the simplest case of this, the network may consist of only a single layer (which 
is both input and output) and simply connects to itself over time.  The Pattern 
Completion Network discussed earlier is one such example.  Recurrent 
networks usually take time to process a single input (as activation flows back 
and forth between nodes).  Often, giving a recurrent network an input and 
allowing it to process it is called running the network (although this can often 
refer to training as well). 
 
Other networks may have layers with more indirect influences on themselves.   
The TRACE model (McClelland and Elman, 1986), for example, is a type of 
recurrent network known as an interactive activation model (or IAM ).  In this 
model, activation starts at the feature level and is passed to the phoneme level and 
then to the word level.   The word level then passes activation back down to the 
phoneme level (via feedback) connections, so that the phoneme activation at time 
2 is a function of both the feature input and information from the word level 
(which of course is determined by the phoneme level at time 1).  This process 
cycles over and over again through time and predicts a number of the results 
about the temporal dynamics of speech perception. 
 
Another famous recurrent network is Elman’s (1990) simple recurrent network 
(or SRN).  These networks have been used to model all sorts of sequential 
behavior (of which language is probably the most interesting).  They use back-
propagation for learning and are trained to predict the next input they will 
receive.  For example, if they are learning sequences of words such as “the dog 
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layer.  Activation in the hidden units is not simply computed from the input 
layer alone, rather it is equal to the input layer multiplied by its weights plus the 
activation of the old hidden units (at the last time-step) multiplied by some other 
weights.  Output activation is computed from these hidden units.  Thus, when 
dealing with temporal stimuli (such as language), the SRN you will need to be 
basing outputs on not only the current input (for a word, for example, the current 
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computing the genomes of the next generations, and having mutation.  I direct the 
reader to Mitchell (1999) for a good introduction to them.   
 
There is nothing mathematically special about genetic algorithms.  They simply 
form another class of search tools for fitting a model to a data.  Other classes 
include learning rules like Back Propagation or statistical optimization 
techniques like Maximum Likelihood Estimation.  The reader should bear in 
mind that among these optimization tools, genetic algorithms are the most poorly 
understood, and may not be the most efficient (they will take longer to solve the 
problem than other techniques).   
 
Genetic algorithms are popular mostly because of the compelling (to some 
people) biological analogy they provide.  However, a close look at this analogy 
suggests they may not be as compelling as many people think.  Researchers have 
used genetic algorithms to set the weights of a network as well as to determine 
features of the architecture (number of nodes, connectivity, learning rule, etc..).  
However, if you accept the majority-view that weights encode learned 
knowledge, it is hard to accept the evolutionary analogy for genetically 
determined weights as we have yet to find evidence for inherited knowledge.  
Moreover when genetic algorithms are used to determine the architecture of a 
model it is often extremely difficult to understand how a model is solving a 
particular task and how the genetic algorithm arrived at that solution.  Because of 
this, such models are not good instantiations of a theory—since the theorist did 
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good model of part-of-speech tagging), since it is unlikely the 
syntactic processor is simply given these… 

3) What feature of the model allows it to solve the problem?  How does it 
solve it?  

4) Does the time-course over learning and/or processing match the same 
time-course in humans?   

5) And most importantly, what is the linking hypothesis between the 
model and the data?  Models do not output eye-movements, or button-
presses or EEG waves or grammaticality judgments or reaction times.  
Whenever we relate model output to actual data, we must form some 
linking hypothesis as to how this relationship holds.  It is crucial that 
this be made explicit and that it be well reasoned.  Additionally, this 
linking hypothesis is just as important a part of theory building as the 
model itself: the same model with different linking hypotheses can 
often yield strikingly different results. 

 
When building a model, one needs to keep similar issues in mind.  Although there 
is a large engineering literature that focuses on building models with the single 
goal of solving a particular problem, for the most part, connectionist networks in 
psycholinguistics and linguistics are built to instantiate a theory of language 
processing or learning (or some other aspect of language).  In these models, there 
are a number of decisions to be made, and the best modelers will make these 
decisions on the basis of the theory they are trying to instantiate. 

1) Localist or distributed representation?  If a goal is neurological 
plausibility, distributed representations may be preferred (as 
grandmother cells have not yet been found in the brain) however a 
topographic map may be even better.  If the goal is to relate output to 
discrete experimental responses, then maybe a localist representation 
will make it easier to do that. 

2) What is the goal of learning?  If you wish to model the time course of 
development or acquisition, maybe a more neurologically plausible 
unsupervised scheme is best.  However, if you merely wish to show 
that a particular categorization or mapping is learnable from the input, 
a supervised learning rule may suffice.  This distinction is not very 
clear-cut in the literature (many developmental arguments have been 
made with back-propagation), but it is important to keep in mind 
when building the model.  If you do use a supervised learning rulȩ 
what is the basis of the teaching signal?  Could it arise in real life with 
real brains/minds?  Maybe you aren’t interested in learning at all, but 
rather, are more interested in exploring processing mechanisms.  Here 
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you may even consider setting the weights manually, or with a genetic 
algorithm . 

3) Are you striving for a completely neurologically plausible architecture 
or is an abstraction enough?  The answer to this can often constrain all 
the architectural choices you might need to make. 

 
Because of the power inherent in connectionist networks and because they are 
often as opaque as the cognitive system they are attempting to model, several 
cautions must be exercised.  Models must be developed to implement specific 
theories, and a specific linking hypothesis must be formed linking the model 
with the data.  The architecture of the model should be grounded in good 
linguistic and psychological theory and should be tied to the theory we wish to 
instantiate.  We should make every attempt to understand 
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