
University of Rochester Working Papers in the Language Sciences—Vol. Spring 2000, no. 1
Katherine M. Crosswhite and Joyce McDonough (eds.)

http://www.ling.rochester.edu/wpls/s2000n1/mcmurray.pdf

73 WPLS:UR, vol S2000, no. 1

http://www.ling.rochester.edu/wpls/s2000n1/mcmurray.pdf

A common question that linguists have asked me is “what is a connectionist
model?” The answer to that question is surprisingly quite simple. A
connectionist model is really an algorithm for turning some input (which
presumably maps onto something of psychological or linguistic interest) into
some other output (which may map onto some data). In this regard it is very
similar to any other cognitive or linguistic model that has been implemented
computationally. Take, for example, an Optimality Theory Grammar. An OT
grammar turns a collection of phonological forms from Gen (the input) into the
actual production (the output). The only difference between this grammar and a
neural network is that the kinds of computations we are allowed to use in
creating the algorithm are different. OT prescribes one type of computation
(constraint satisfaction), while connectionist models use computations that are
very loosely based on the kinds of computations that neurons and populations of
neurons might perform. Under this view, connectionism is simply a set of
(mostly) agreed upon guidelines for what sorts of algorithms are appropriate for
describing cognitive behavior.

Architecture

All connectionist models are composed of two simple concepts: nodes (AKA
neurons or units or cells) and weights (AKA connections or synapses).

A node can be considered a highly idealized representation of a neuron. It has an
activation (or firing rate) that tells us how strongly that neuron is firing. In a
very simple case, a node might be assigned to a real world concept such as a
specific phoneme, /b/. It’s neighboring nodes may represent other phonemes, /d/
and /t/. In this case, the activation of the /b/ node relative to the other nodes
would tell us how strongly the system believes a /b/ was present in the input.
Oftentimes the activation of a node will be simplified by saying the node is
either on (firing) or off (not firing , inactive). Keep in mind that very few
connectionist models have nodes with discrete activation levels—on or off
simply refer to the node having a lot of activation (relative to the other nodes) or
a little.

Nodes are organized into layers (AKA arrays or vectors). Each layer is a
cluster of nodes that are [usually] functionally related. For example, one layer of
a network may consist of the group nodes that correspond to each phoneme;
another layer may have nodes that correspond to words.

McMurray—Connectionism for… er… linguists 74

http://www.ling.rochester.edu/wpls/s2000n1/mcmurray.pdf

In any model, one or more layers is designated the

75 WPLS:UR, vol S2000, no. 1

http://www.ling.rochester.edu/wpls/s2000n1/mcmurray.pdf

nodes are the values that we will attempt to relate to the empirical data that we are
trying to evaluate. For example in a network designed to categorize phonemes,
the input layer might represent a digitized waveform, and the output layer
would have a node corresponding to each phoneme. The way in which the
activation of nodes in the output layer is related to the empirical data or
behavior is called the linking hypothesis (because it links models and data). For
example, for our phoneme categorization example, our linking hypothesis might
be that the model will choose the phoneme with the most activation as the
phoneme it heard. I’ll talk more about linking hypotheses later.

Layers of nodes that do not receive input or provide output are called hidden
layers. These layers compute some sort of intermediate representation (between
input and output layers). Many modelers dispense with the input, hidden, and
output layer designations all together and simply refer to layers by what they
designate. The TRACE model (McClelland and Elman, 1986), for example has a
feature layer, a phoneme layer, and a word layer, but none of them is
designated the output layer. TRACE, in fact, can use either phonemes or words
as the output depending on the task at hand. In models like these, one must think
about the logical flow of information is a psychological sense if you wish to
determine the input and output layers. Many models are described simply as 2-
layer or 3-layer networks (or more). A 2-layer network will necessarily have
only an input and output layer. A 3-layer network will have both of these plus
one hidden layer. A 4-layer network will have two hidden layers.

In the remainder of this paper, whenever I refer to simply input or output, I will
be referring to the entire input or output layers (i.e. the pattern of activations of
across node in the layer).

Often times, a layer of nodes is thought of as a set of coordinates in a
multidimensional space. This is easiest to visualize for a network of two nodes.
The activation of the first node could be considered the X-coordinate. The
activation of the second node would be the Y-coordinate. Then any particular
pattern of activations across the two nodes can be thought of as a unique point in
a 2-D coordinate system. So if the input activations for the two nodes were .5 and
.8, we could talk about the input as the single point <.5, .8>.

Of course, when we move up to larger networks we won’t be able to visualize a
16 dimensional space. However, we can still talk about one, and this spatial
metaphor is used frequently. Under this metaphor, the input space would consist
of all regions of the possible N-dimensional space that are used in the network
(where N=number of inputs). The output-space is the corresponding regions in

McMurray—Connectionism for… er… linguists 76

http://www.ling.rochester.edu/wpls/s2000n1/mcmurray.pdf

M-dimensional space (where M=number of output nodes). People often refer to
the dimensionality of a space (which is simply the number of nodes). Then when
information is passed from an input space of high dimensionality to an output
space of lower dimensionality, the information is undergoing dimensionality
reduction—it must be compressed (and some information invariably lost) in
order to “fit” in the lower dimensionality space. This forces the network to make
group some inputs together and discard others according to the correlations it
finds in its inputs. They types of categorizations it makes may be of ultimate
interest psychologically.

This way of describing network behavior spatially provides a convenient way of
describing a network. When activation patterns change, we can talk about the
network moving to a new point in the input space. Moreover modelers often
speak of learning (which I will discuss shortly) as a search through the output
space. Finally, dimensionality reduction is often thought of as a form of
information compression (as a network may have to represent 3-D information,
for example, in only two dimensions). Dimensionality reduction is also a
common concept used to describe statistical techniques such as factor analysis,
clustering, and multidimensional scaling (if you don’t know these terms, that’s
fine, I merely throw them out to show that the analogy can be helpful in relating
neural network computations to other types of computational tools).

In a network nodes are connected to each other by weights (AKA synapses,
connections). Each weight represents the amount of activation that can be
passed by one node to another. If an input node is highly active and it has a
strong connection to an output node, that output node will also be highly
active. If it has a weak connection that output node will not be highly active.
We’ll go over the details of this in a moment.

The set of all weights between two layers is termed the weight matrix (for
reasons we’ll see shortly). When a model is built, the weight matrix often starts
as a matrix of small random numbers (as we will discuss, it will be modified later
by learning).

Weights can either excite (make active) or inhibit (make inactive) the nodes they
connect. Excitatory weights will cause a node to become more active if the
nodes that connect to it are active. Inhibitory weights will cause a node to
become less active if the nodes that connect to it are active.

Weights that pass information from input to output nodes (or in that direction
between hidden nodes) are considered feed-forward connections. Weights that

77 WPLS:UR, vol S2000, no. 1

http://www.ling.rochester.edu/wpls/s2000n1/mcmurray.pdf

pass information backwards
from output nodes to input
nodes (or in that direction
between hidden nodes) are
considered feedback
connections. Bidirectional
weights pass information both
ways. Weights that connect
units within a layer are
considered lateral connections.
The most common use of
lateral connections is lateral
inhibition in which nodes
within a layer attempt to turn
each other off. The result of this process is that a few nodes have all the
activation and the others have none.

Consider the example network in figure 2. This network consists of two input
nodes and two output nodes (a 2x2 network), fully connected (each input nodes
is connected to each output node) and feed-forward. The activations of the input
nodes have been set to 2 and .5 by the modeler.

To compute the values of the output nodes, we will use some function of the
inputs and the weights. This function is called the activation function.

outputtop = f(inputtop, inputbottom, weighttop->top, weightbottom->top) (1)

The simplest activation function is the linear activation function. Each output
node is simply the sum of the activation each input node multiplied by the
corresponding connection (weight) to that output node.

outputtop = inputtop*weighttop->top + inputbottom*weightbottom->top (2)
outputbottom = inputtop * weighttop->bottom + inputbottom * weightbottom->bottom

This can be generalized to:

Num input

 outputy = Σ inputx* weightx->y (3)

 x=1

2

.5

McMurray—Connectionism for… er… linguists 78

http://www.ling.rochester.edu/wpls/s2000n1/mcmurray.pdf

We can simplify this even further with some linear algebra. Let Output (with no
index) become a vector of all the output activations, and Input (with no index)
be a vector of all the input activations.

 Input = [Inputtop Inputbottom] = [2 .5] (4)
 Output = [Outputtop Outputbottom]

Now let W be defined as a matrix where the row indicates the index of the input
node (in this case, the top node would have an index or row of 1 and the bottom
would have an index of two), and the column indicates the index of the output
node. The value at each position indicates the connection strength or weight.

W = [weight1,1 weight1,2] (5)
 [weight2,1 weightb2,2]

W = [weighttop->top

79 WPLS:UR, vol S2000, no. 1

http://www.ling.rochester.edu/wpls/s2000n1/mcmurray.pdf

-10 -5 0 5 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Input activation

O
ut

pu
t a

ct
iv

at
io

n

Figure 3: The logistic activation function. For any input
activation to an output node, the logistic function outputs a
value between 0 and 1.

logistic activation function serves to truncate the possible values of the output
activation to a value between 0 and 1. If the sum of inputs*weights is high, the
output node will equal 1. If that sum is low, the output node will have an
activation of 0.

Non-linear activation functions are crucial to the success of multiple-layer
networks because it has been shown that for any network with more than two
layers that uses a linear activation function, a two-layer network can be built
that performs equivalently. Essentially, if you want to reap any advantage out of
having more than two layers, you have to use a non-linear activation function.
The logistic function is a particularly good one, since the logistic function is
what is known as a basis function. A basis function is a function that can
approximate any other function if you add enough of them together (the loGse si musge out ofe basis fusction logistic activation fusction netould-layer

McMurray—Connectionism for… er… linguists 80

http://www.ling.rochester.edu/wpls/s2000n1/mcmurray.pdf

models can instantiate any sort of theory and should not be pigeon-holed into
these particular lines of thought.

As I mentioned previously, layers of nodes are often thought of as coordinates in
a multidimensional space. Under this view, the weight matrix then performs a
remapping of a coordinate in N dimensional space to one in M dimensional
space (where N is the number of input nodes, and M is the number of output
nodes (see figure 4 for an example and explanation of this).

Representation

It is often useful to classify a model (or sometimes just a layer of a model)
according to how it represents real world information.

A localist representation is one in which each node has a label of some kind, and
when that node is active, it is in a sense saying “I think my label is correct.” An
example of this is a layer of cells in which each node corresponds to a different
phoneme, or one in which nodes correspond to various people. Often localist
nodes are derogatorily called Grandmother Cells, after a famous thought
experiment in which someone asked “What would happen if your grandmother
cell was damaged? Would you be unable to recognize your own grandmother?”

0 1.0 2.0

1.0

2.0

< 2.0 , 0.8 > <1.95>

< 0.7 , 1.5 > <1.5>

Input Output
[2.0 0.8] * W = 1.95

McMurray—Connectionism for… er… linguists 82

http://www.ling.rochester.edu/wpls/s2000n1/mcmurray.pdf

distributed and localist representations, and one should not worry too much about
the debate over them.

Learning

As you may have noticed, most of the interesting computational work in a neural
network is done by the weights. At this point you are probably asking yourselves:
how do I get the weights? That will be the topic of the next section: learning. I
intend to keep to the more abstract conceptual level, however, an excellent
description of the math behind the various learning systems can be found in
Rumelhart, and McClelland (1986) and McClelland, and Rumelhart (1986). A
good comparison of work in developmental psychology with connectionist
learning can be found in Elman, Bates, Johnson, Karmiloff-Smith, Parisi and
Plunkett (1992)

The connection strength associated with each weight is usually set by a learning
process (although in some cases, such as TRACE, they can be set by hand by the
modeler to implement a specific theory). Each network has a learning rule that
essentially tells the network how to modify its weights at any given point.
Learning rules change the weights as a function of the activations of the input
and output units, the value of the weight itself and possibly some error signal—
how close the actual output values are to the target output values (the ones you
want the network to output). All learning rules have a component called the
learning rate that determines how fast or slow the network can change its
weights (essentially how much the network can change as a result of a single
input). This gradual modification in weights leads to gradual change in the
network’s performance. The challenge to the modeler is to use learning rules
appropriate to the task the model is given so that this change is an improvement.
The process of modifying the weights over time is learning (also training, or
simply running a model).

Regardless of the type of learning rule used, networks can be trained in two
ways: batch learning, and online learning. In batch learning, the modeler
presents the each item in the training set to the network and computes it’s
corresponding output activations. The weights are not changed until after the
network has seen all of the possible input/output pairs when they will be
modified using a learning rule. This forces the learning rule to consider all the
input the network will ever see before changing any weights. The network will
probably process the entire batch multiple times (each time is usually called an
epoch, though this term is often misused in the literature). Batch learning is
often considered implausible (e.g. it seems clear that children do not wait until

McMurray—Connectionism for… er… linguists 84

http://www.ling.rochester.edu/wpls/s2000n1/mcmurray.pdf

Then at each iteration, the actual output can be compared with the target output
(the output provided by the teaching signal) and each weight can be adjusted
according to whether it was contributing to the correcte

McMurray—Connectionism for… er… linguists 86

http://www.ling.rochester.edu/wpls/s2000n1/mcmurray.pdf

plausible teaching signal, since brains probably do have access to their
inputs. However, if you are not interested in learning itself, but rather,
on whether or not a set of inputs are learnable, the plausibility of the
teaching signal is not as much of an issue.

2) Hidden unit representations are important. In a lot of cases, (such as

87 WPLS:UR, vol S2000, no. 1

http://www.ling.rochester.edu/wpls/s2000n1/mcmurray.pdf

 Wxy = Wxy + ε(Ix*Oy - Wxy) (8)

Here if I and O are active, we will increase W by a small amount (the old value of
W multiplied by the learning rate). If they are not we will decrease it by a small
amount.

Less common than Hebbian Learning is AntiHebbian Learning in which if an
input and output node are simultaneously active, their connection decreases. Of
course, there are many unnamed variants of these two supervised learning rules,
but they are similar in that they do not depend on a teaching signal.

One common scheme for using unsupervised learning is competitive learning
(or winner-take-all learning, see Rumelhart and Zipser (1986)). In this scheme
before computing the weight change, the modeler sets the output node with the
highest activation to one and all the others to zero. This is a simplification of a
lateral inhibition process. Then the weights are changed according to a
Hebbian or other unsupervised rule. The result of this sort of learning is that the
model is able to find categories in the input (i.e. it will devote one output node to
one category of inputs in the training set and a different output node to the others).

Another common scheme is the Kohonen (1982) network (or Self Organizing
Feature Map, SOFM). A Kohonen network works very similarly to a
competitive learning network, except that rather than exciting only the winner
in the output layer, the winner and a number of it’s neighbors are excited
together, before applying the learning rule. The result of this is a distorted map
of the input space in the output space in which regions of the input space that
occur frequently in the training set have lots of output nodes devoted to them and
other regions have fewer.

Hebbian learning has also been used in Pattern Completion Networks (famous
examples are the Brain-State-in-a-Box and the Hopfield Network). These
networks have only a single layer that serves as both the input and output layers.
All of the nodes in this layer are connected to each other (laterally) and these
weights are modified with Hebbian learning. The model is trained on a series of
patterns until the weights settle. Then afterwards, the model can be given a
partially complete pattern and will be able fill in the rest. For example, a four-
node pattern completion network may be trained on the following activation
patterns

[1 0 1 0]

McMurray—Connectionism for… er… linguists 88

http://www.ling.rochester.edu/wpls/s2000n1/mcmurray.pdf

 [0 1 0 1]

With training, it will learn that when node #1 is on, node #3 should also be on,
and that when node #2 is on, node #4 should also be on. So when presented with
[1 0 _ 0], it will output the correct pattern, [1 0 1 0].

Noise

89 WPLS:UR, vol S2000, no. 1

http://www.ling.rochester.edu/wpls/s2000n1/mcmurray.pdf

Recurrence

Cognition often must unfold over time. In order for networks to capture this,
recurrence is often added. Recurrence generally means that a layer’s
activation is in some way influenced by that layer’s activation at a previous
time. Some recurrent networks will have layers (such as an output layer) that
are a function of themselves (at previous times). For example:

 Outputtime=t = f(outputtime=t-1,inputs…) (9)

In the simplest case of this, the network may consist of only a single layer (which
is both input and output) and simply connects to itself over time. The Pattern
Completion Network discussed earlier is one such example. Recurrent
networks usually take time to process a single input (as activation flows back
and forth between nodes). Often, giving a recurrent network an input and
allowing it to process it is called running the network (although this can often
refer to training as well).

Other networks may have layers with more indirect influences on themselves.
The TRACE model (McClelland and Elman, 1986), for example, is a type of
recurrent network known as an interactive activation model (or IAM). In this
model, activation starts at the feature level and is passed to the phoneme level and
then to the word level. The word level then passes activation back down to the
phoneme level (via feedback) connections, so that the phoneme activation at time
2 is a function of both the feature input and information from the word level
(which of course is determined by the phoneme level at time 1). This process
cycles over and over again through time and predicts a number of the results
about the temporal dynamics of speech perception.

Another famous recurrent network is Elman’s (1990) simple recurrent network
(or SRN). These networks have been used to model all sorts of sequential
behavior (of which language is probably the most interesting). They use back-
propagation for learning and are trained to predict the next input they will
receive. For example, if they are learning sequences of words such as “the dog

McMurray—Connectionism for… er… linguists 90

http://www.ling.rochester.edu/wpls/s2000n1/mcmurray.pdf

layer. Activation in the hidden units is not simply computed from the input
layer alone, rather it is equal to the input layer multiplied by its weights plus the
activation of the old hidden units (at the last time-step) multiplied by some other
weights. Output activation is computed from these hidden units. Thus, when
dealing with temporal stimuli (such as language), the SRN you will need to be
basing outputs on not only the current input (for a word, for example, the current

91 WPLS:UR, vol S2000, no. 1

McMurray—Connectionism for… er… linguists 92

http://www.ling.rochester.edu/wpls/s2000n1/mcmurray.pdf

computing the genomes of the next generations, and having mutation. I direct the
reader to Mitchell (1999) for a good introduction to them.

There is nothing mathematically special about genetic algorithms. They simply
form another class of search tools for fitting a model to a data. Other classes
include learning rules like Back Propagation or statistical optimization
techniques like Maximum Likelihood Estimation. The reader should bear in
mind that among these optimization tools, genetic algorithms are the most poorly
understood, and may not be the most efficient (they will take longer to solve the
problem than other techniques).

Genetic algorithms are popular mostly because of the compelling (to some
people) biological analogy they provide. However, a close look at this analogy
suggests they may not be as compelling as many people think. Researchers have
used genetic algorithms to set the weights of a network as well as to determine
features of the architecture (number of nodes, connectivity, learning rule, etc..).
However, if you accept the majority-view that weights encode learned
knowledge, it is hard to accept the evolutionary analogy for genetically
determined weights as we have yet to find evidence for inherited knowledge.
Moreover when genetic algorithms are used to determine the architecture of a
model it is often extremely difficult to understand how a model is solving a
particular task and how the genetic algorithm arrived at that solution. Because of
this, such models are not good instantiations of a theory—since the theorist did

93 WPLS:UR, vol S2000, no. 1

McMurray—Connectionism for… er… linguists 94

http://www.ling.rochester.edu/wpls/s2000n1/mcmurray.pdf

good model of part-of-speech tagging), since it is unlikely the
syntactic processor is simply given these…

3) What feature of the model allows it to solve the problem? How does it
solve it?

4) Does the time-course over learning and/or processing match the same
time-course in humans?

5) And most importantly, what is the linking hypothesis between the
model and the data? Models do not output eye-movements, or button-
presses or EEG waves or grammaticality judgments or reaction times.
Whenever we relate model output to actual data, we must form some
linking hypothesis as to how this relationship holds. It is crucial that
this be made explicit and that it be well reasoned. Additionally, this
linking hypothesis is just as important a part of theory building as the
model itself: the same model with different linking hypotheses can
often yield strikingly different results.

When building a model, one needs to keep similar issues in mind. Although there
is a large engineering literature that focuses on building models with the single
goal of solving a particular problem, for the most part, connectionist networks in
psycholinguistics and linguistics are built to instantiate a theory of language
processing or learning (or some other aspect of language). In these models, there
are a number of decisions to be made, and the best modelers will make these
decisions on the basis of the theory they are trying to instantiate.

1) Localist or distributed representation? If a goal is neurological
plausibility, distributed representations may be preferred (as
grandmother cells have not yet been found in the brain) however a
topographic map may be even better. If the goal is to relate output to
discrete experimental responses, then maybe a localist representation
will make it easier to do that.

2) What is the goal of learning? If you wish to model the time course of
development or acquisition, maybe a more neurologically plausible
unsupervised scheme is best. However, if you merely wish to show
that a particular categorization or mapping is learnable from the input,
a supervised learning rule may suffice. This distinction is not very
clear-cut in the literature (many developmental arguments have been
made with back-propagation), but it is important to keep in mind
when building the model. If you do use a supervised learning rulȩ
what is the basis of the teaching signal? Could it arise in real life with
real brains/minds? Maybe you aren’t interested in learning at all, but
rather, are more interested in exploring processing mechanisms. Here

95 WPLS:UR, vol S2000, no. 1

http://www.ling.rochester.edu/wpls/s2000n1/mcmurray.pdf

you may even consider setting the weights manually, or with a genetic
algorithm .

3) Are you striving for a completely neurologically plausible architecture
or is an abstraction enough? The answer to this can often constrain all
the architectural choices you might need to make.

Because of the power inherent in connectionist networks and because they are
often as opaque as the cognitive system they are attempting to model, several
cautions must be exercised. Models must be developed to implement specific
theories, and a specific linking hypothesis must be formed linking the model
with the data. The architecture of the model should be grounded in good
linguistic and psychological theory and should be tied to the theory we wish to
instantiate. We should make every attempt to understand

McMurray—Connectionism for… er… linguists 96

http://www.ling.rochester.edu/wpls/s2000n1/mcmurray.pdf

