Jennifer Brisson
she/her/hers
Professor
PhD
Research Active
- Office Location
- 310 Hutchison
- Telephone
- (585) 275-8392
- Web Address
Office Hours: By appointment
Research Overview
Research in the laboratory investigates the evolution and development of morphology. We’re particularly interested in the interplay of nature and nurture in affecting final adult morphology. We use a variety of approaches including genetics, genomics, and developmental biology.
Our study system is the pea aphid. Aphids are remarkable insects, able to produce a variety of morphologies across their complex life cycles that alternate between asexual and sexual development. During the asexual phase, females are often wingless and specialize in the mass production of genetically identical wingless daughters. However, if their host plant becomes too crowded, those same females can switch to producing daughter that have wings as adults so that those daughters can fly away and find better food sources. Thus, winged and wingless females of pea aphids are genetically identical yet morphologically very different. How these alternative morphologies are produced is one of the main questions we address in the lab.
During their sexual phase in the fall, pea aphids produce winged and wingless males as well. However, unlike the females the males are not genetically identical and their morphology is not determined by environmental circumstances. Rather, adult male morphology appears to be under the control of a single locus on the X chromosome called aphicarus.
Ongoing projects in the lab include:
• Understanding the male wing dimorphism system. Males are winged and wingless in some species, but monomorphic in others. How has this trait evolved across aphid species? What is the genetic basis of wing dimorphism and is that mechanism the same or different across species?
• Discovering the molecular mechanisms underlying developmental plasticity in pea aphid asexual females. How does a pea aphid mother sense her environment and pass that information on to her developing embryos? How does the developmental timing of environmental sensitivity differ among aphid species?
• Investigating genetic variation for the female polyphenism. We’ve observed that aphid lines respond to high density environments differently. How extensive is this variation in nature? What genes underlie this plasticity variation?
Research Interests
- Evolution of morphology
- Molecular basis of phenotypic plasticity
- Evolution and development in the pea aphid
- The role of epigenetics in polyphenism
Recent Publications
Xiaomi Liu, Jennifer A. Brisson Biology Letters, 2023
Binshuang Li, Ryan D Bickel, Benjamin J Parker, Omid Saleh Ziabari, Fangzhou Liu, et al. eLife, 2020
Molecular Ecology, 2020
Gregory K. Davis, Jennifer A. Brisson, Ryan D. Bickel Evo-Devo Lessons Learned from Aphids Evolutionary Developmental Biology, 2019
McPhetres, J., Rutjens, B.T., Weinstein, N., Brisson, J.A. Modifying attitudes about modified foods: Increased knowledge leads to more positive attitudes Journal of Environmental Psychology, 2019
Parker, B.J., Brisson, J.A. A Laterally Transferred Viral Gene Modifies Aphid Wing Plasticity Current Biology, 2019
Purandare, S.R., Brisson, J.A. Divergent chemosensory gene expression accompanies ecological specialisation of pea aphid morphs Ecological Entomology, 2019
Grantham, M.E., Shingleton, A.W., Dudley, E., Brisson, J.A. Expression profiling of winged- and wingless-destined pea aphid embryos implicates insulin/insulin growth factor signaling in morph differences Evolution and Development, 2019
C.-X. Zhang, J.A. Brisson, H.-J. Xu Molecular mechanisms of wing polymorphism in insects Annual Review of Entomology, 2019
Zera, A.J., Vellichirammal, N.N., Brisson, J.A. Diurnal and developmental differences in gene expression between adult dispersing and flightless morphs of the wing polymorphic cricket, Gryllus firmus: Implications for life-history evolution Journal of Insect Physiology, 2018
For more, please visit my